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Abstract 

Half a million people die every year from smoking-related issues across the United States. It is essential to identify 

individuals who are tobacco-dependent in order to implement preventive measures. In this study, we investigate the 

effectiveness of deep learning models to extract smoking status of patients from clinical progress notes. A Natural 

Language Processing (NLP) Pipeline was built that cleans the progress notes prior to processing by three deep neural 

networks: a CNN, a unidirectional LSTM, and a bidirectional LSTM. Each of these models was trained with a pre-

trained or a post-trained word embedding layer. Three traditional machine learning models were also employed to 

compare against the neural networks. Each model has generated both binary and multi-class label classification. Our 

results showed that the CNN model with a pre-trained embedding layer performed the best for both binary and multi-

class label classification. 

 

Introduction 

Tobacco use is a primary cause of many afflictions ranging from coronary heart disease to lung cancer. Approximately 

500,000 people die every year from smoking-related issues in the United States [1], and 50% of people who smoke 

die of smoking-related complications. Cigarette smoking is the number one cause of lung cancer, contributing to about 

90% of lung cancer related deaths [2]. Therefore, it is of utmost urgency to employ preventive measures such as 

smoking cessation and correspondingly, reduce smoking and tobacco products consumption. Identification of 

individuals who smoke will enable providers to implement methods to treat tobacco dependence. However, accurate 

detection of smokers is problematic due to clinic workflows and data quality issues. 

The Patient Past Medical History (PMS) includes questions for identifying smoking status in clinical settings, however 

data quality is limited by inconsistencies. First, PMS is often misleading due to the poor wording used during the 

interview [3]. Second, survey administration procedures are not standardized across organizations [3]. Smoking status 

can be extracted from unstructured sources like Electronic Health Records (EHRs) and progress notes [4] as clinicians 

record patients' use of tobacco in their progress notes [5]. However, a major obstacle to parsing through progress notes 

is their unstructured nature [6]. Hence, extracting relevant information requires going through progress notes manually 

[7]. 

Natural language processing (NLP) has advanced to make unstructured texts more accessible and consumable [8-9]. 

NLP techniques transform free text into extracted concepts that a machine can better identify. This allows machine 

learning to perform a variety of tasks such as classifying and adjusting intensive care risks by identifying procedure 

and diagnosis [10], detecting heart failure criteria [11], identifying adverse drug effects [12-13], detecting the status 

of autism spectrum disorder [15] or asthma [14], and estimating the activity of rheumatoid arthritis [16]. 

Many of the first algorithms introduced to extract information used rule-based approaches and traditional machine 

learning methods. Traditional machine learning methods include logistic regression, random forest, naive-bayes, and 

most notablely, support vector machine (SVM). Of particular relevance to this paper is the Mayo Clinic NLP System 

developed to address the i2b2 Smoking Status Discovery Challenge [17]. In this system, three levels of classification 

were implemented, the first two of which were based on making decisions from a rule-based perspective. The third 

level of classification employed a SVM with manually selected temporal resolution words and date indications as the 

features [18]. Although, the system was fairly accurate in classifying patients on their smoking status, desired 

improvements were identified. Many of these improvements were rooted in the need to manually select features for 
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the machine learning algorithm. This led to certain key features not being measured or non-relevant features being 

over analyzed [17]. 

Deep learning techniques have effectively captured long-range dependencies through deep hierarchical feature 

construction [19]. These techniques require a lot of computational power and huge stores of training data. With the 

ever-increasing abundance of patient data, applying deep learning models to health records and achieving comparable 

results have become realistic. A number of publications have applied deep learning to EHR data in order to perform 

clinical informatics tasks. These publications indicate that deep learning techniques often perform better than 

traditional machine learning methods and do not require as thorough preprocessing or feature engineering [20-21]. 

Furthermore, deep learning produces higher accuracy in a myriad of applications. Therefore, our hypothesis is that 

smoking status can be extracted from EHR with better accuracy through the use of deep neural networks. 

In this paper, we investigate the application of three different deep learning or Deep Neural Network (DNN) models 

on EHR data in order to extract patient smoking status. The primary aim of this study is to identify whether deep 

learning has the potential to identify smoking status of patients better than parsing past medical history or traditional 

machine learning models. Three traditional machine learning models were developed and trained to serve as a 

benchmark. We looked at both binary classification of status (Smoker vs. Non-smoker) as well as multi-class 

classification (Current Smoker vs. Former Smoker vs. Non-smoker). Before entering the data through these models, 

the text within each of the progress notes were cleaned through an NLP pipeline. In addition, two sets of word 

embeddings were created for the vocabulary present in the progress notes, one pre-trained, the other trained on the 

progress notes themselves. 

 

Methods 

A generalized workflow used to process text and classify documents is shown in Figure 1. The DEMON-Isilon, a 

High Performance Computing Cluster at Wake Forest University Health Sciences was used to train the deep-learning 

models. The DEMON’s centralized storage system provides over 190 TB of storage, 1,358 2.6GHz Intel CPU cores, 

and 4,992 706MHz Nvidia GPU cores, and is useful for running complex models. 

 

Figure 1: General Workflow of Text Processing and Document Classification for this study. 

Establishing Labels: 

This study was approved by the Wake Forest Health Sciences IRB. A total of 6,298 de-identified progress notes 

belonging to 781 patients were obtained from the Translational Data Warehouse. These progress notes were compiled 

together based on a unique patient ID. Henceforth, we will refer to these compiled notes as patient notes. For each 

patient, smoking status labels were extracted from the Patient Social History in Epic electronic health records (EHR). 

Because of the errors that are present in social histories, labels for each progress note were cleaned through a rule-

based algorithm. All 781 patients were given two labels, one for the binary DNN models, another for the multi-class 
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DNN models. Binary labels were 'Smoker' and 'Never Smoker'. Multi-class labels were 'Current Smoker', 'Former 

Smoker', and 'Never Smoker'. 

Preprocessing Text: 

Prior to processing by the machine learning models, the patient notes were cleaned via a natural language processing 

(NLP) pipeline. The NLP pipeline contains several features applied to clean the text. These features were created 

through the use of nltk, regex, and autocorrect python libraries. Figure 2 depicts the flow in which these features were 

applied to the text. 

 

Figure 2: Order of steps taken to preprocess patient notes 

I. Miscellaneous Cleaning: 

Strings in the text were standardized to fit a more common English Lexicon. This involves replacing certain strings 

of text with certain other characters that were better processable as well as removing contractions and cleaning 

abbreviations. For example, a replacement would include changing all instances of "e - mail" to "email". 

II. Removal of Repeat Sentences:  

Physicians often copy sections of the progress notes from previous visits into the new progress notes [22]. It was 

decided that such copied lines provided no new information. To increase performance and efficiency when training 

machine learning models, verbatim sentences in each patient note were removed, leaving only the first instance of a 

sentence in the patient note. 

III. Removal of Punctuation: 

Punctuation was not necessary for our algorithm to capture the semantic meaning inside the progress notes [10]. 

Hence, for more efficient processing, punctuation and special characters were removed. 

IV. Correction of Spelling: 

To embed the words present in the progress notes, it was essential for the words to be recognized by the pre-trained 

corpus. Moreover, it was desirable for the post-trained corpus to recognize two words as the same despite any slight 

spelling inaccuracies. Correspondingly, we decided to correct the spelling of the most infrequent words: words that 

appear only once throughout the text of each patient note due to the fact that many misspelled words would be in the 

infrequent list. In order to distinguish the biomedical term that appears only once and a misspelled word, we utilized 

the NOBLE Coder, which autocodes free text with concepts from NCIt controlled terminology [23]. The Noble Coder 

result allowed us to identify whether an infrequent word is a medical concept, consequently it would not be subject to 

autocorrection. Once this identification was complete, any words that were in the infrequent list, but not a medical 

concept, were autocorrected. 
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V. Removal of Stopwords: 

As employed by many natural language processing techniques, our pipeline has removed the most common stop words 

(e.g. "a", "the", and "it" etc.). These words don't present much semantic meaning to a sentence so their removal greatly 

improves the efficiency of later algorithms [7]. 

Word Embeddings: 

Once the text was cleaned, two different word embeddings were created: pre-trained and post-embedding. Word 

embeddings can capture the semantic meaning of words by converting them into numeric vectors [24]. Vectors of 

semantically similar words would be closer to each other. Word embedding has been applied in many biomedical 

named entity recognition (NER) tasks [25-26]. 

Before creating the embeddings, the data sequences (patient notes) lengths were truncated to ~100,000 tokens. This 

greatly improved efficiency of word embedding training as well as the eventual deep learning model training. The 

first embedding uses a word2vec model pre-trained from the Google news corpus. This word vector model contains 

approximately three million three-hundred dimensional vectors. The second embedding was word2vec model created 

specifically from the patient notes, which we will refer to as post-trained. The latter word2vec model theoretically 

captures more of the complex medical terminology that is present in the patient notes. Moreover, word2vec is more 

capable of capturing the semantic relationships between words within each progress note. In order to control any 

variables with dimensionality, we set the length of post-trained word2vec word vectors to be three hundred. The 

gensim library from Python was employed to process both these word embeddings. 

Traditional Machine Learning Methods: 

Three traditional machine learning methods were created in this study to serve as a comparison for model performance 

of deep learning. These models are the Naive Bayes (NB) [27], Support Vector Machine (SVM) [28], and Logistic 

Regression (LR) [29]. We have generated the term frequency–inverse document frequency (TF-IDF) vectors [30] on 

the processed text using unigrams with a minimum document frequency of 1, and a maximum document frequency of 

100%. Parameters for the algorithms are shown in Table 1. 

.  

Table 1: Hyperparameters for Traditional machine learning models 

Deep Learning Models: 

We have used three deep learning models to classify patients based on smoking status: a unidirectional Long short-

term memory (LSTM) model, a bidirectional LSTM model, and a Convolutional Neural Network (CNN) model. The 

specifications for each of the deep learning models are listed below in Table 2. 

Table 2: Hyperparameters for deep learning models 
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Recurrent Neural Networks: 

Recurrent Neural Networks (RNN) are neural networks that attempt to model time dependencies and sequential events 

by adding additional weights to the network, creating cycles in the network [26]. There are many variations of RNN. 

Especially relevant to this study is the long short-term memory (LSTM) network which was built to handle the gradient 

vanishing problem that often occurs in a standard RNN [31]. DeepCare, a network that predicts future medical 

outcomes using electronic health records, was created using an LSTM model [32]. In this current study, both a 

unidirectional LSTM (LSTM_Uni) and a bidirectional LSTM (LSTM_Bi) model were created to extract smoking 

status from patient notes. 

CNN: 

Convolutional neural networks have been applied successfully in many previous image processing and text processing 

studies [32]. CNNs work by modeling hierarchical complicated patterns using smaller and simpler patterns [33]. 

Convolutional layers along with the max-pooling layer allows models to learn useful word representations while also 

making the model more computationally efficient. 

Hyperparameter Optimization: 

The grid-search technique was performed to optimize hyperparameters in the deep learning models. Parameters that 

were tuned include learning rate, dropout, and number of hidden layers. 

Model Setup and Evaluation: 

To be consistent between the different deep learning models, we split the data into 0.66/0.33 train/test datasets. There 

were no overlapping patients between the training and testing set for each model. Five-fold cross-validation was 

performed for each model in order to produce more accurate metrics. For DNNs that classified patient notes based on 

binary labels, binary cross-entropy was used as the loss function. For DNNs classifying patient notes based on multi-

categorical labels, categorical cross-entropy was used as the loss function. For both RNN and CNN algorithms, early-

stopping was implemented. In other words, the model stopped training if the loss function does not improve for 2 

epochs on the validation dataset. Four evaluation metrics were used to compare the performance of the models: 

accuracy, precision, recall, and F1 score. 

Open Source Platforms: 

High-level NN API Keras (https://keras.io/) using Tensorflow (https://github.com/tensorflow/tensorflow) as a 

backend was used to set up the neural network structures. Word embedding was performed using Gensim 

(https://radimrehurek.com/gensim/). One of the embedding techniques used in this investigation employed Google 

News Vectors ((https://github.com/mmihaltz/word2vec-GoogleNews-vectors). Noble Coder (http://noble-

tools.dbmi.pitt.edu/) was used to extract medical concepts for token comparison in the NLP pipeline. Deep learning 

models were created using the Keras python library. Code for this study can be found at https://github.com/criw-

git/NLP_Smoking_Extraction. 

 

Results 

Due to the stochastic nature of machine learning algorithms, each model was repeated 10 times. We calculated the 

average metrics and corresponding standard deviations. The performance metrics for each model is shown below in 

Table 3 and Table 4. Performance metrics are further elaborated upon in Figures 3-6. 
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Table 3: Performance Metrics for Binary Classification Tasks 

 

Table 4: Performance Metrics for Multi-class Classification Tasks 

 

Figure 3: Performance metrics for traditional machine learning models.

 

Figure 4: Performance metrics for deep learning models. For reference, LSTMU is the unidirectional LSTM model 

whereas LSTMB is the bidirectional LSTM model
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Figure 5: Validation accuracies and losses for binary classification deep learning models.

Figure 6: Validation accuracies and losses for multi-class classification deep learning models. 

Because the tasks carried out by the models were classification-based, accuracy and F1 score will be the principal 

metrics we use to evaluate these models. For binary classification, the CNN with pre-trained word embeddings 

performed the best both in accuracy (0.8066) and F1 score (0.8540). It should also be noted that all the binary 

classification DNNs outperformed all of the traditional learning methods in both accuracy and F1 score. 

For multi-class classification, the CNN with pre-trained embedding performed the best in terms of accuracy (0.6838). 

However, the Naive-Bayes model provided a comparable F1 Score (0.6968) to the CNN Pre-trained model (0.6804).  

 

Discussion 

In this study, we have successfully applied a natural language pipeline coupled with deep learning methods to extract 

smoking status from clinical progress notes. When looking specifically at the deep learning models, the CNN model 

with pre-trained word embeddings demonstrated significantly better performance than any of the models both in binary 

label classification and multi-class label classification. 

There may be multiple reasons for this outcome. CNN models are able to learn text input by detecting patterns of 

multiple sizes. In essence, this learning mechanism allows CNNs to extract local and position-invariant features well 

[34]. RNNs, like LSTMs, make use of sequential data where the current step has a relationship with a previous one 

[26]. RNNs works well in applications where sequential information is especially important. For tasks which are more 

classification based, like the ones performed in this study, CNNs often perform better and provide a more efficient 

model structure. On the other hand, RNNs are better used in machine translation applications or in cases where the 

model is to predict what comes next in a certain sequence. 

Another reason for the performance result may be the limited data. For this study, we only had access to 781 patient 

notes. Initially, the idea of not compiling separate progress notes into one patient note was considered. However, not 
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all progress notes had associated smoking status labels. The only accessible labels were patient-level which is why we 

compiled all of one person's progress notes into a patient note (one data sample input). There are many effects of this 

lack of data. First, the post-trained word2vec models were significantly worse than the pre-trained word embedding 

models. The post-trained model learns the meaning of words based on the context of those words within each progress 

note. As such, larger numbers of progress notes would allow for a superior post-trained word2vec model and 

embedding. The lack of data prevented the post-trained word2vec model from learning to its best ability and therefore, 

the pre-trained word2vec model was able to perform better. Second, the lack of data may have affected the learning 

potential of the models. As deep learning models take much more data to train [20], we speculate that both the CNN 

and RNN models were impacted by the deficit of data but the RNN models were especially impaired. he results 

demonstrate that all of the deep learning models, with the exception of the CNN pre-trained model, hit a certain 

maximum in terms of performance. This is particularly true for the binary classification models where metrics closed 

out at an F1 Score of 0.80 and an accuracy of 0.68. We hypothesize that this may be due to the DNNs hitting a ceiling 

in their learning capacity. Essentially, they are unable to learn further information with the amount of data provided 

to them [35]. We believe that given more data, these models would be able to overcome this ceiling.  

When comparing the traditional and deep learning methods against each other, it seems that DNNs outperformed 

traditional methods in binary classification tasks. In multi-class classification tasks, all of the models provided more 

or less similar accuracy scores save for the CNN Pre-trained model, which outperformed all of the models. However, 

the traditional models did provide significantly better F1 scores than many of the deep learning models. We suspect 

that this may be due to the lack of data. Given more data, we presume that DNNs will be able to outperform traditional 

methods in multi-class classification as well. 

Our goal in this study was to implement an automated system for clinical progress note classification using deep 

learning. Moving forward, we plan to further investigate the capabilities of the NLP and DNN analysis pipelines given 

a larger data set. We will also look to see if this pipeline can be used to perform other classification tasks. Another 

possibility for future studies is to generalize this pipeline to read data from multiple research facilities and multiple 

resources. Not only would this increase the number of samples for models to train on, but it would also allow for a 

more robust pipeline. 

Conclusion 

Automated NLP coupled with deep learning was demonstrated to have potential in document classification tasks for 

unstructured clinical progress notes. It is important that this field be widely investigated in order to develop better 

ways of identifying target patients. 
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