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abstract

PURPOSE Building well-performing machine learning (ML) models in health care has always been exigent
because of the data-sharing concerns, yet ML approaches often require larger training samples than is afforded
by one institution. This paper explores several federated learning implementations by applying them in both a
simulated environment and an actual implementation using electronic health record data from two academic
medical centers on a Microsoft Azure Cloud Databricks platform.

MATERIALS AND METHODS Using two separate cloud tenants, ML models were created, trained, and exchanged
from one institution to another via a GitHub repository. Federated learning processes were applied to both
artificial neural networks (ANNs) and logistic regression (LR) models on the horizontal data sets that are varying
in count and availability. Incremental and cyclic federated learning models have been tested in simulation and
real environments.

RESULTS The cyclically trained ANN showed a 3% increase in performance, a significant improvement across
most attempts (P , .05). Single weight neural network models showed improvement in some cases. However,
LR models did not show much improvement after federated learning processes. The specific process that
improved the performance differed based on the ML model and how federated learning was implemented.
Moreover, we have confirmed that the order of the institutions during the training did influence the overall
performance increase.

CONCLUSION Unlike previous studies, our work has shown the implementation and effectiveness of federated
learning processes beyond simulation. Additionally, we have identified different federated learning models that
have achieved statistically significant performances. More work is needed to achieve effective federated learning
processes in biomedicine, while preserving the security and privacy of the data.
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Recent advancements in artificial intelligence (AI) have
demonstrated the potential to transform medicine1 and
are promising for improving outcomes while reduc-
ing the cost of patient care because of its capability
for earlier, more accurate diagnosis and personalized
patient-centered care. Image classification, speech
recognition, and natural language processing have
seen some noteworthy achievements.2 Moreover,
thanks to machine learning (ML), hospitals can
accomplish more efficient clinical workflows by re-
ducing unnecessary procedures, which leads to
further cost reductions.1

The performance of an ML algorithm depends highly
on the amount and quality of data it is trained on,
particularly for more complex models.3 In the era
of precision medicine, the availability of complex
multidimensional patient data sets requires larger
population samples for generalization.4 Furthermore,

the scarcity of data in underrepresented populations
may lead to biases when training data do not suffi-
ciently reflect the attributes of these populations.5

Healthcare data quality and algorithmic challenges
are also known barriers for ML.6

Many approaches have been proposed to address the
lack of data heterogeneity.7,8 The most promising of
these approaches requires multi-institutional collab-
orations that would increase not only the size of the
training data but also its data diversity. Ideally, study
data from each institution would be shared via a
central data store where a single model can be trained
on the combined multi-institutional data. However,
there are several obstacles to implementing such a
solution.7-9 First, central storage and transferring large
amounts of data over the network have an exorbitant
associated cost.10 The second major obstacle is the
regulatory barrier surrounding patient data protection.

ASSOCIATED
CONTENT

Appendix

Author affiliations
and support
information (if
applicable) appear at
the end of this
article.

Accepted on October
13, 2020 and
published at
ascopubs.org/journal/
cci on January 7,
2021: DOI https://doi.
org/10.1200/CCI.20.
00060

1

Downloaded from ascopubs.org by WEILL CORNELL MEDICAL LIBRARY on July 19, 2023 from 157.139.021.001
Copyright © 2023 American Society of Clinical Oncology. All rights reserved. 

http://ascopubs.org/journal/cci
http://ascopubs.org/journal/cci
http://ascopubs.org/doi/full/10.1200/CCI.20.00060
http://ascopubs.org/doi/full/10.1200/CCI.20.00060
http://ascopubs.org/doi/full/10.1200/CCI.20.00060
http://crossmark.crossref.org/dialog/?doi=10.1200%2FCCI.20.00060&domain=pdf&date_stamp=2021-01-07


Sharing patient data (with or without protected health in-
formation) requires several legal and regulatory approvals
and interinstitutional agreements, which can be a cum-
bersome and lengthy process.

The aforementioned obstacles necessitate the develop-
ment of various federated learning strategies to train ML
models without sharing confidential patient data across
institutional firewalls. Federated learning is an ML frame-
work in which models are trained on data that reside at
each institution.7,9

Federated Learning Models

Federated learning models can be divided mainly into two
groups, parallel and nonparallel. Parallel training is de-
veloped with the intention of faster (and optimized)
completion of the runs; however, it often poses a large
logistical problem in certain applications, including the
lack of uniformity in network connection speeds and
computational resources. On the other hand, nonparallel
training, although less efficient, can be implemented
across nonhomogeneous computing environments with-
out the need for synchronization of runs. Chang et al9 have
tested three nonparallel training structures: ensemble
training, single weight training, and cyclical weight
training.

Nonparallel models, including ensemble training, involve
training separate models at each of the institutions on
their respective data and subsequently gathering aver-
ages of the weights for each model toward a final model.
In single weight training, the model is first trained on data
from one institution until the training validation loss be-
gins to plateau. The trained model is then transferred
to the second institution where it is further trained on
new data. The same process is continued across other
institutions in the collaborative environment (Appendix
Fig A1). It is important to note that the training order of the
specific institutions often affects the final performance of
the model.9

Cyclical weight training is very similar to single weight
training in that the same model is transferred from one
institution to the next with two main important differ-
ences. First, at each institution, the model is only trained
for a preset number of epochs (generally, a lower number
of epochs yield a better performing final model). Second,
after the last institution trains the model with the initial
preset number of epochs, the model is returned to the
first institution to be retrained for the second group of
the preset number of epochs. In essence, the model
is trained by each institution multiple times before the
final model is produced, hence the cyclical nature of
this process. The process is summarized in the Appendix
Figure A2.9

OBJECTIVE

To evaluate our federated ML approach, we trained ML
models to predict the risks of diseases associated with
tobacco and radon using data from electronic health
records (EHRs) at two healthcare systems. Tobacco use is
the leading modifiable risk factor for lung cancer. The
majority of counties in the Carolinas have adult smoking
rates that exceed the national average.11 Radon is a col-
orless, odorless, radioactive gas. According to the Envi-
ronmental Protection Agency (EPA), it is the most
significant modifiable risk factor for lung cancer after to-
bacco use.12,13 Radon is present in the ground as a
byproduct of uranium decay, and it typically enters homes
and buildings as it diffuses into the air.14,15 At present,
North and South Carolina have an average indoor radon
screening level . 4 pCi/L in many of its counties, and the
EPA recommends radon mitigation measures at 4 pCi/L or
greater.15

Prior studies have already demonstrated that smoking and
radon have both independent and synergistic effects on
lung cancer and chronic obstructive pulmonary disease
(COPD) incidences. Given that these are well-established
risk factors for lung cancer and COPD, they are optimal use

CONTEXT

Key Objective
Machine learning (ML) models have the promise and potential of transforming health care from diagnosis to the treatment

recommendations. However, lack of sufficient heterogeneous data because of patient privacy protections risks ML model
generalizability. For this study, multiple ML models were implemented on highly heterogeneous data for a validated
scientific question across medical centers without sharing data.

Knowledge Generated
Heterogeneous data across centers have improved the model performances compared with a simulation in a single institution.

Additionally, cloud platforms have adequate tools and security controls to run federated learning implementations.
Relevance
Despite advancements, ML models are still not widely used at clinics because of a lack of sufficient and diverse data. This

study has tested a platform on which many organizations can improve their models in a federated learning fashion.
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cases for establishing the capability of several federated ML
models on disease outcomes. Moreover, because data are
derived from both EHRs (patient-level data) and publicly
available data (ecological data), they also allow us to test
these models using data extracted from distinct sources.

MATERIALS AND METHODS

The Institutional Review Boards (IRBs) of the Wake Forest
University Health Sciences and Medical University of South
Carolina (MUSC) approved the study with protocol num-
bers IRB00056277 and Pro00090097, respectively. Upon
IRB approval, patient EHR data from Wake Forest Baptist
Medical Center (WFBMC) and the MUSC were used to test
the efficacy and performance of federated learning models
trained in a Databricks (Databricks Inc., San Francisco, CA)
cloud environment. The deidentified data included each
patient’s sex, age (in years), race (Asian, Caucasian, Afri-
can American, American Indian, other, or patient refused),
smoking level (0, 1, or 2), radon exposure level (0, 1, or 2),
and diagnosis of lung cancer and COPD (ICD-10: C34 and
J44, respectively). Sex and race were integer encoded. For
smoking, 0 is nonsmoker, 1 is former smoker (quit 5 + years
ago), and 2 is coded to represent current smokers. For
radon, 0 is used for an exposure of, 2 pCi/L, 1 is between 2
pCi/L and 4 pCi/L, and 2 is used for cases that have
an exposure of . 4 pCi/L. Radon data for both North
Carolina and South Carolina were gathered from public
websites and from private companies that perform radon
measurements.16

Data Security

To avoid sharing the data across institutions, we employed
several MS Microsoft Azure (Microsoft, Redmond, WA) se-
curity toolkits.17 First, data from each institution had been
loaded to the respective Azure storage account, which is
equipped with its own access control mechanism.Moreover,
we needed to avoid the option of in-code access secret
codes, usernames, and passwords, being stored in shared
Jupyter Notebooks, thus compromising security. To cir-
cumvent this issue, we enabled the Azure Key Vault to house
the storage account’s access secrets. The Key Vault is
configured for each study team through the Azure Active
Directory (AD), which relies on institutional AD-based user
management. Finally, we had to create a scope in Databricks
with Key Vault’s Domain Name System and Directory ID to
point notebooks to the correct Key Vault. The configuration is
outlined on Microsoft’s public Microsoft Docs repository.18

Study Design

In the first part of this study, we attempted to simulate single
weight and cyclical weight training in a local environment
based on smoking and radon data using WFBMC data.
Subsequently, actual implementation involves the two-
institution federated learning processes with separate
Azure subscriptions (and data) that were accessible only by
the respective teams. We then tested the use of separate
Databricks resources in combination with GitHub as a

method of sharing model weights with various institutions
without sharing data. We hypothesized that both methods
would improve model performance compared with a model
trained on only one institution’s data.

Preprocessing. The study data have three diagnosis cat-
egories for prediction: lung cancer, other, and COPD that
were integer encoded. To reduce the problem into a binary
classification task, we created two outcome classes: class
1, which is a disease state with either lung cancer or COPD
and class 0, no disease state (ie, no cancer or COPD). The
distributions of the data sets are shown in the Appendix
Figure A3 and Table A1. Conducting a test of homogeneity
between the two data sets resulted in a χ2 statistic of 19,008
(P, .0001), suggesting that the two data sets are extremely
heterogeneous. Data were split (67/33) between training
and testing data for each institution.

Because of a heavy imbalance in the Wake Forest data set
(most of the labels were class 0), the synthetic minority
oversampling technique (SMOTE)19 was used to reduce the
imbalance in WFBMC data. SMOTE effectively increases
the count of the minor class in a set of data.

Model construction. In this study, we constructed an ar-
tificial neural network (ANN) to model our data. The
model’s weights were initialized with a Keras initializer. The
learning rate was 0.001. The model consisted of two dense
layers and used Adam as its optimization function.20

For single weight training, themodels implemented an early
stopping algorithm dependent on validation loss. For the
cyclical weight training, each institution trained the model
for five cycles with 10 epochs each. Additionally, the model
was trained for 10 epochs and then transferred to the next
institution. A total of five models were built: base 1 (model
trained on institution 1’s data), base 2 (model trained on
institution 2’s data), single weight model A (institution 1
trains the model first), single weight model B (institution 2
trains the model first), and cyclical weight model. Fur-
thermore, two single weight models were necessary to
capture performance changes because of the ordering of
institutions in single weight training. Test data from each
institution were run through the five models, and model
performances were captured. For each of these mea-
surements, 10 trials were conducted and then averaged to
reach a final performance metric. A student’s t test was
used to determine significance between different models.

Logistic regression (LR) models were also constructed to test
whether federated learning methods proved efficient when
applied on traditional MLmethods. It is important to note that
because LR is not an epoch-based learning algorithm, only
single weight federated learning was conducted in addition
to base tests. Data aggregation was conducted as was done
for the ANN.Model training took an average of 6.35 seconds.
Transfer mechanism to and fromGitHub took 3.02 and 3.05
seconds on average, respectively.

Cloud-Based Federated Learning Implementation

JCO Clinical Cancer Informatics 3

Downloaded from ascopubs.org by WEILL CORNELL MEDICAL LIBRARY on July 19, 2023 from 157.139.021.001
Copyright © 2023 American Society of Clinical Oncology. All rights reserved. 



Simulation. As the correlation of radon and tobacco with
lung cancer and COPD is previously established, we sought
to demonstrate that ML models resulted in the same cor-
relation when using federated learning processes. For the
simulation, we created two mock institutions with two
unique training sets and one shared test set. To create
these two unique training sets, data from the WFBMC were
randomly shuffled and divided into three parts: two training
sets and one test set, each of equal size. To ensure rep-
licability and objectiveness, all trials for both cyclical weight
training and single weight training were performed on the
same splits of data.

Implementation on Azure Databricks. To set up the feder-
ated learning environment on Databricks, it was essential to

develop a method to save MLmodels so that models can be
transferred across institutions, as shown in the Appendix
Figure A4. This allows training in an asynchronous fashion.
Each institution’s data were located in respective institu-
tional Azure storage accounts. The Azure Key Vault was
configured to limit access to only study staff via Azure AD.
The data were accessed from the Jupyter Notebook
through the Key Vault with an appropriate access scope.
The ANN and LR models were implemented in the Jupyter
environment.

To perform the federated learning, the trained model was
saved on a shared GitHub repository, which was accessible
by either institution. GitHub version control was required for
model upload.21 Themodel could then be shared with other

TABLE 1. ANNModel Performances on Institution 1 Test Data: Base 1 (Model Trained on Institution 1’s Data), Base 2 (Model Trained on Institution 2’s Data),
Single Weight Model A (Institution 1 Trains the Model First), and Single Weight Model B (Institution 2 Trains the Model First); ANN Model Performances on
Institution 2 Test Data: Base 1 (Model Trained on Institution 1’s Data), Base 2 (Model Trained on Institution 2’s Data), Single Weight Model A (Institution 1
Trains the Model First), and Single Weight Model B (Institution 2 Trains the Model First)
Model F1 Score Precision Recall Accuracy

ANN tested on institution 1

Base (trained on institution 1 data) 0.4374 6 0.0086 0.2962 6 0.0077 0.8365 6 0.0219 0.6797 6 0.0121

Base (trained on institution 2 data) 0.4375 6 0.0115 0.2899 6 0.0091 0.8914 6 0.0240 0.6587 6 0.0137

Single weight model A 0.4473 6 0.0106 0.3022 6 0.0084 0.8624 6 0.0368 0.6829 6 0.0141

Single weight model B 0.4426 6 0.0137 0.3039 6 0.0118 0.8161 6 0.0364 0.6939 6 0.0163

Cyclical weight 0.4524 6 0.0108 0.3046 6 0.0079 0.8796 6 0.0201 0.6832 6 0.0088

ANN tested on institution 2

Base (trained on institution 1 data) 0.4752 6 0.0156 0.3301 6 0.0134 0.8482 6 0.0236 0.6888 6 0.0136

Base (trained on institution 2 data) 0.4686 6 0.0163 0.3171 6 0.0169 0.9009 6 0.0211 0.6558 6 0.0269

Single weight model A 0.4875 6 0.0074 0.3459 6 0.0078 0.8267 6 0.0304 0.708 6 0.0116

Single weight model B 0.4936 6 0.0152 0.3532 6 0.0140 0.8210 6 0.0323 0.7168 6 0.0159

Cyclical weight 0.4987 6 0.0090 0.3512 6 0.0080 0.8600 6 0.0090 0.7094 6 0.0086

Abbreviation: AAN, artificial neural network.

TABLE 2. LR Model Performances on Institution 1 Test Data: Base 1 (Model Trained on Institution 1’s Data), Base 2 (Model Trained on Institution 2’s Data),
Single Weight Model A (Institution 1 Trains the Model First), and Single Weight Model B (Institution 2 Trains the Model First); LR Model Performances on
Institution 2 Test Data: Base 1 (Model Trained on Institution 1’s Data), Base 2 (Model Trained on Institution 2’s Data), Single Weight Model A (Institution 1
Trains the Model First), and Single Weight Model B (Institution 2 Trains the Model First)
Model F1 Score Precision Recall Accuracy

LR tested on institution 1

Base (trained on institution 1 data) 0.4485 6 0.0085 0.7634 6 0.0152 0.3175 6 0.0061 0.7206 6 0.0048

Base (trained on institution 2 data) 0.4570 6 0.0083 0.7183 6 0.0150 0.3352 6 0.0061 0.7460 6 0.0043

Single weight model A 0.4579 6 0.0131 0.7141 6 0.0151 0.3373 6 0.0140 0.7422 6 0.0058

Single weight model B 0.4547 6 0.0087 0.7763 6 0.0166 0.3215 6 0.0063 0.7229 6 0.0052

LR tested on institution 2

Base (trained on institution 1 data) 0.4889 6 0.0062 0.7686 6 0.0168 0.3585 6 0.0042 0.7300 6 0.0039

Base (trained on institution 2 data) 0.4725 6 0.0050 0.6952 6 0.0110 0.3579 6 0.0040 0.7392 6 0.0034

Single weight model A 0.4666 6 0.0086 0.6994 6 0.0172 0.3502 6 0.0105 0.7378 6 0.0059

Single weight model B 0.4884 6 0.0037 0.7771 6 0.0049 0.3560 6 0.0040 0.7264 6 0.0043

Abbreviation: LR, logistic regression.

Rajendran et al

4 © 2021 by American Society of Clinical Oncology

Downloaded from ascopubs.org by WEILL CORNELL MEDICAL LIBRARY on July 19, 2023 from 157.139.021.001
Copyright © 2023 American Society of Clinical Oncology. All rights reserved. 



collaborators who had access to the shared GitHub reposi-
tory. The GitHub application programming interface was
accessed via the PyGitHub Python library to effectively im-
plement this system.22 Each institution had a unique and
personal access token to this repository that was saved as a
Databricks secret in their respective Azure Account. Upon
training the model, each institution had access to the shared
model, which was saved as a pickle file in their Jupyter
Notebook. The shared repository could be accessed asyn-
chronously, and the pertinent model could be extracted.

RESULTS

Four performance metrics were captured: F1 score, pre-
cision, recall, and accuracy. The primary metric that was

used for model improvement was the F1 score, given the
class imbalance. The F1 score is the harmonic mean of the
precision and recall.

The mean metrics along with their respective standard de-
viations up to four significant digits are shown in Tables 1-4.

Simulation

Table 1 represents the performance of the ANN models
across each institution’s test data. All three federated
learning models depicted in Table 1 had a significant in-
crease in accuracy and F1 score over the base models
when tested on both institutions’ test data (P , .05). The
single weight model showed the most significant im-
provement over the base values.

T1-T4

TABLE 3. ANNModel Performances onWF’s Test Data: Base 1 (Model Trained onWF’s Data), Base 2 (Model Trained onMUSC’s Data), SingleWeight Model
A (WF Trains the Model First), and Single Weight Model B (MUSC Trains the Model First); ANN Model Performances on MUSC’s Test Data: Base 1 (Model
Trained on WF’s Data), Base 2 (Model Trained on MUSC’s Data), Single Weight Model A (WF Trains the Model First), and Single Weight Model B (MUSC
Trains the Model First)
Model F1 Score Precision Recall Accuracy

ANN tested on WF

Base (trained on WF’s data) 0.4612 6 0.0120 0.3285 6 0.0103 0.7682 6 0.0146 0.7022 6 0.0112

Base (trained on MUSC’s data) 0.3800 6 0.0076 0.2986 6 0.0119 0.7342 6 0.0213 0.5990 6 0.0047

Single weight model A 0.3675 6 0.0145 0.2355 6 0.0035 0.6425 6 0.0314 0.6269 6 0.0113

Single weight model B 0.4716 6 0.0158 0.3876 6 0.0150 0.6467 6 0.0132 0.7481 6 0.0167

Cyclical weight 0.4656 6 0.0045 0.3567 6 0.0104 0.7148 6 0.0069 0.7352 6 0.0096

ANN tested on MUSC

Base (trained on WF’s data) 0.5267 6 0.0166 0.6896 6 0.0138 0.4265 6 0.0240 0.5540 6 0.0166

Base (trained on MUSC’s data) 0.6685 6 0.0044 0.8228 6 0.0038 0.5630 6 0.0072 0.6748 6 0.0024

Single weight model A 0.6749 6 0.0022 0.8239 6 0.0040 0.5715 6 0.0049 0.6792 6 0.0008

Single weight model B 0.5512 6 0.0228 0.6884 6 0.0154 0.4603 6 0.0301 0.5641 6 0.0144

Cyclical weight 0.6704 6 0.0062 0.8053 6 0.0055 0.5693 6 0.0097 0.6816 6 0.0040

Abbreviations: ANN, artificial neural network; MUSC, Medical University of South Carolina; WF, Wake Forest.

TABLE 4. LRModel Performances onWF’s Test Data: Base 1 (Model Trained onWF’s Data), Base 2 (Model Trained onMUSC’s Data), SingleWeight Model A
(WF Trains theModel First), and SingleWeight Model B (MUSC Trains theModel First); LRModel Performances onMUSC’s Test Data: Base 1 (Model Trained
on WF’s Data), Base 2 (Model Trained on MUSC’s Data), Single Weight Model A (WF Trains the Model First), and Single Weight Model B (MUSC Trains the
Model First)
Model F1 Score Precision Recall Accuracy

LR tested on WF

Base (trained on WF’s data) 0.4784 6 0.0018 0.7501 6 0.0049 0.3512 6 0.0022 0.7381 6 0.0026

Base (trained on MUSC’s data) 0.4128 6 0.0142 0.5939 6 0.0531 0.3204 6 0.0368 0.7278 6 0.0380

Single weight model A 0.4110 6 0.0071 0.5814 6 0.0186 0.3184 6 0.0133 0.7329 6 0.0157

Single weight model B 0.4778 6 0.0028 0.7511 6 0.0048 0.3503 6 0.0030 0.7402 6 0.0035

LR tested on MUSC

Base (trained on WF’s data) 0.5220 6 0.0066 0.3992 6 0.0075 0.7540 6 0.0036 0.5741 6 0.0035

Base (trained on MUSC’s data) 0.6746 6 0.0050 0.5766 6 0.0025 0.8130 6 0.0041 0.6760 6 0.0010

Single weight model A 0.6750 6 0.0006 0.5774 6 0.0025 0.8123 6 0.0049 0.6760 6 0.0015

Single weight model B 0.5182 6 0.0047 0.3946 6 0.0066 0.7550 6 0.0054 0.5726 6 0.0014

Abbreviations: LR, logistic regression; MUSC, Medical University of South Carolina; WF, Wake Forest.
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Table 2 represents the performances of LR models across
each institution’s test data. There was no statistically sig-
nificant improvement of the accuracy or F1 score provided
by the federated learning methods in the case of LR
models. Figure 1 shows the receiver operating character-
istic (ROC) curves that also show the earlier stated statistical
significance.

Actual Implementation on Azure

Table 3 represents the performances of the ANN models
across each institution’s test data on the Databricks envi-
ronment. When applied to WFBMC test data, the single
weight model B and cyclical weight model had a signifi-
cantly higher accuracy than both base models (P , .01).
Against the MUSC’s test data, the cyclical weight model
showed significant improvement in both F1 score and
accuracy (P , .05).

Similar to the simulation, the LR federated learning
methods did not show much improvement over the base
model. Table 4 represents the performances of LR models

across each institution’s test data, and Figure 2 shows the
ROC curves that also show the earlier stated statistical
significance.

DISCUSSION

The purpose of this study was to determine whether fed-
erated learning methods would improve the performance of
the ML models in health care while preserving the security
and privacy of the patient data. The results, from both the
simulation environment and the actual implementation on
Databricks, suggest that federated learning methods do
have the potential to improve model performances with a
few caveats.

One observation made during this study was that the
federated learning methods generally did not improve the
performance of LR. This might be due to the lower com-
plexity of LR and lack of an iterative training process (ie,
epochs) when compared with ANN models.

For the ANN models, there was generally one federated
model that performed better than baseline models for
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FIG 1. ROC curves corresponding to
performance metrics in tables. (A) ROC
curve based on ANN models’ perfor-
mances against institution 1 test data.
(B) ROC curve based on ANN models’
performances against institution 2 test
data. (C) ROC curve based on LR
models’ performances against institu-
tion 1 test data. (D) ROC curve based
on LR models’ performances against
institution 2 test data. ANN, artificial
neural network; LR, logistic regression;
ROC, receiver operating characteristic.
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each of the four attempts shown in the results. However,
the type of federated model that performed best in each of
these situations varied. One such reason may be the
training order of institutions in these federated learning
methods. As previous studies have shown, the training
order of institutions impacts the final performance of the
model, especially for single weight training, which was
shown a similar effect in our results. Whereas single
weight model A, when tested with Wake Forest data,
provided an F1 score of 0.3675, the same federated
process in single weight model B provided an F1 score of
0.4716. We hypothesize that this is due to the persistent
role that the order of institutions plays in single weight
training.

One concern with the federated ML methods is their
susceptibility to an adversarial attack in the collaborative
environment. Several studies have shown that there are
multiple attacks such as membership interference or at-
tribute inference that could affect the safety of the

models.23-27 Privacy-preserving AI has been coined and
implemented by some; however, it does not yet provide the
necessary protection in a federated learning environment
and may even lead to the exposure of potentially sensitive
data.28-33 Further evaluation of model security and alter-
native approaches are still needed and will be reserved for
future studies.

One limitation of this work is the use of a relatively simplistic
model with few features for testing our federated learning
approach. Future work should include the implementation
of more complex ML, including deep learning models using
this infrastructure.

In this project we demonstrated a federated learning pro-
cess for ML models in a collaborative academic health
center setting going beyond simulation. While this is still an
emerging field, our work establishes the potential for fed-
erated learning to significantly improve model perfor-
mance. Previous studies have focused mainly on simulated
data; however, we have taken the additional step of
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FIG 2. ROC curves corresponding to
performance metrics in tables. (A) ROC
curve based on ANN models’ perfor-
mances against WF’s test data. (B) ROC
curve based on ANN models’ perfor-
mances against the MUSC’s test data.
(C) ROC curve based on LR models’
performances against WF’s test data. (D)
ROC curve based on LR models’ per-
formances against the MUSC’s test data.
ANN, artificial neural network; LR, lo-
gistic regression; MUSC, Medical Uni-
versity of South Carolina; ROC, receiver
operating characteristic; WF, Wake
Forest.
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implementing them across institutions. In doing so, we have
demonstrated an efficient way of sharing and accessing
models across institutions. While our investigation focused

on binary classification, the same protocol for nonbinary
outcome analysis can be easily implemented with new ML
models.
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FIG A4. The workflow of the federated learning environment in databricks.

TABLE A1. A Comprehensive Distribution of the Two Institutions’ Datasets Across Each Feature
Parameter Wake Forest MUSC

Male 2,788 8,580

Female 3,513 8,256

, 29 years old 6 74

30-39 years old 26 260

40-49 years old 216 1,055

50-59 years old 949 3,699

60-69 years old 1,534 5,742

70-79 years old 2,153 4,374

. 80 years old 1,418 1,632

African American 1,007 3,967

Asian 5 46

Native American 11 21

Caucasian 5,254 12,547

Pacific Islander 0 6

Other race 23 187

Refused to state race 1 3

Unknown race 1 59

Nonsmoker 1,044 6,633

Former smoker 3,171 6,905

Current smoker 2,087 3,298

Radon exposure , 2 pCi/L 769 16,157

Radon exposure 2 pCi/L—4pCi/L 3,276 578

Radon exposure . 4pCi/L 2,257 101

Abbreviation: MUSC, Medical University of South Carolina.
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