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Abstract: Clinical trial design (CTD) is a time-consuming process that requires substantial domain 
expertise. Large-scale real-world data (RWD), such as electronic health records (EHR), encodes 
practice-based evidence that is of tremendous value to CTD. In recent years, many machine learning 
methods have been developed to extract such real-world evidence (RWE) from the RWD to inform 
CTD, but they still need to be communicated with the domain experts extensively in an iterative 
manner to be further refined and ultimately useful. In this paper, we introduce TrialGenie, an agentic 
framework that derives RWE for helping with CTD. Through the iterative conversation and analysis 
across agents with different roles, TrialGenie can autonomously refine trial protocols and finally 
generate a robust report containing insights that inform better CTD. We applied TrialGenie on the 
CTD process of several acute diseases including septic shock, acute heart failure, acute pulmonary 
edema, and acute kidney injury using the MIMIC-IV data. The results demonstrate TrialGenie's 
capabilities in facilitating and accelerating the CTD process.  

Introduction 
Randomized controlled trials (RCTs) remain the gold standard for evaluating the efficacy and safety 
of medical interventions. The time and costs, as well as ethical considerations of conducting a full 
RCT have led researchers and practitioners to seek approaches to improve the clinical trial design 
(CTD) process to achieve efficiency and success rate of the corresponding RCT. Real world data 
(RWD), such as electronic health records (EHRs) and insurance/pharmaceutical claims, contain 
tremendous practiced based evidence that are insightful for informing CTD. Numerous statistical and 
machine learning models have been developed in the past decade for extracting such real world 
evidence (RWE),1–5 among which target trial emulation (TTE)6 is a representative framework with the 
goal of emulating an RCT with RWD. By explicitly mirroring the protocol of an RCT—defining eligibility 
criteria, specifying treatment assignment strategies, identifying relevant start and end times for follow-
up, and selecting appropriate analytic strategies—TTE aims to estimate causal treatment effects and 
produce results that can closely approximate what might have been derived from an RCT. Several 
recent research works have demonstrated the great potential of TTE.  
 
Despite the promise, there are several challenges of implementing TTE. First, the elements in the 
target trial protocol (including eligibility criteria, treatment strategies, and outcome, etc.) need to be 
matched to the real world data. Usually these elements are described as natural language in the trial 
protocol, but the EHR data include a large portion of standardized structured information (e.g., 
encoded with the Observational Medical Outcomes Partnership (OMOP1,7–9)). Rigorous computable 
phenotyping process10 is needed to build such mappings.  Second, there is information in the target 
trial protocol that may not exist in RWD, such as the special biomarkers associated with particular 
diseases. In this case, we need domain expertise to determine if the information can be dropped or 
effective surrogate information can be constructed from the RWD. Third, RWD are observational in 
nature, where the patients are not randomized. This introduces complex selection and confounding 
biases. Thus, appropriate covariate balancing and causal inference methods are needed to estimate 
the “true” treatment effects from the RWD.  
 
In addition to replicating RCTs with RWD, TTE also offers an effective tool for extracting evidence 
from RWD. For example, Zang et al.9 used it as a hypotheses generation tool for identifying 
repurposable drug candidates for Alzheimer’s disease. Liu et al.11 leveraged it to assess the impact 
of different eligible criteria on real world treatment effectiveness estimation for non-small cell lung 
cancer trials. Rajendran et al.12 designed a stratified TTE study for investigating the heterogeneous 
response for corticosteroid treatment for sepsis patients. In these studies, TTE produced insights 
even though a target trial may not exist. These insights can help with the design of a real RCT, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2025. ; https://doi.org/10.1101/2025.04.17.25326033doi: medRxiv preprint 

https://doi.org/10.1101/2025.04.17.25326033
http://creativecommons.org/licenses/by-nc-nd/4.0/


through extensive conversations with domain experts and iterative adjustments, and this process is 
still time-consuming. 
 
The rapid development of multi-agent systems (MAS) provides the opportunity for building an 
autonomous system to derive RWE and inform clinical trial design. MAS are computational 
frameworks where multiple autonomous entities, or agents, interact and collaborate to achieve a set 
of goals.13 Each agent typically has its own specialty, knowledge base, and decision-making logic. 
Agents are often implemented as combinations of large language models (LLMs) with access to 
executable tools through APIs, enabling them to carry out diverse and complex tasks. The 
interactions among the agents have proven effective for coordinating diverse expertise, integrating 
heterogeneous data sources, as well as enabling parallel and iterative problem-solving.14–20 The 
complexity of clinical trial design made MAS a promising approach for improving its efficiency and 
effectiveness. 

In this paper, we present TrialGenie, a multi-agent framework designed to facilitate and accelerate 
clinical trial design through the automated extraction and refinement of RWE from EHRs with human 
in the loop. The agents in TrialGenie collaborate together to finish the following procedures: (1) collect 
and standardize the information from existing clinical trials and literatures to provide the knowledge 
for the design of a target clinical trial; (2) generate the protocol of a target clinical trial; (3) map the 
trial related knowledge to EHR through computable phenotypes and create cohorts; (4) conduct 
statistical analysis to derive RWE that can inform the clinical trial design; (5) iteratively refine the trial 
protocol until satisfactory. TrialGenie also leverages Reinforcement Learning from Human Feedback 
(RLHF21) to iteratively improve the quality of the entire MAS with expert feedback. We further 
demonstrate TrialGenie’s capability through case studies on trial design for acute conditions in the 
ICU setting with the MIMIC-IV22 data set. 

TrialGenie Architecture  
Overview  
TrialGenie is a modular multi-agent framework designed to support efficient, automated, and expert-
aligned clinical trial design. It comprises five specialized agents—Supervisor, Trialist, Informatician, 
Clinician, and Statistician—each powered by large language models (LLMs) and equipped with 
distinct domain-specific capabilities (Figure 1a). These agents collaborate through structured 
conversations to perform key steps in the trial design workflow, including protocol specification, data 
extraction, covariate selection, statistical modeling, and interpretation. The architecture not only 
includes a core sequential pipeline, i.e., Supervisor → Trialist → Informatician → Clinician → 
Statistician → Supervisor (as shown in Figure 1c), which reflects the natural progression from initial 
trial specification to analysis and reporting, but also extends beyond this traditional sequential 
execution by supporting dynamic interactions among agents. For instance, the Informatician can 
consult the Clinician when facing data sparsity or missing covariates, prompting iterative refinements 
in eligibility criteria or variable/outcome substitutions. This flexible agent communication strategy 
allows the system to adapt to appropriately accommodate the challenges in real world data. Note 
that TrialGenie does not require manual specification of the workflow, allowing agents to dynamically 
respond to one another’s outputs and adapt to new constraints or evolving objectives. For instance, 
if the Informatician identifies high levels of missingness for a key variable or detects poor covariate 
balance, the system can autonomously initiate a feedback loop with the Clinician to assess alternative 
variable definitions or biomedically appropriate surrogates. In addition, TrialGenie integrates tool-
augmented reasoning capabilities of each agent (Figure 1b). The Trial Retriever helps the Trialist 
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identify relevant protocols from clinical trial registries; the RAG module empowers the Clinician to 
ground its decisions in biomedical literature by performing semantic searches over large corpora 
such as PubMed; and the Trial Simulator provides the Statistician with access to statistical and 
machine learning libraries for confounder adjustment, outcome analysis, and treatment effect 
estimation. These tools are invoked automatically within the agent workflow to convert natural 
language insights into executable code, structured queries, and interpretable analytics. Beyond these 
core utilities, TrialGenie supports advanced reasoning functions (Figure 1d), including knowledge 
grounding from literature to improve factual accuracy, RLHF to align agent outputs with expert 
preferences, eligibility criteria (EC) optimization using Shapley-based attribution methods to quantify 
the influence of inclusion rules on outcomes, and subgroup analyses to uncover heterogeneous 
treatment effects that may be masked in the aggregate population. These capabilities are modular 
yet synergistic, enabling TrialGenie to continuously refine trial protocols with both methodologically 
robust and clinical interpretability. 
 
The final output of this multi-agent system is a comprehensive trial design report (Figure 1e), which 
synthesizes contributions from all agents into a unified document. This report includes standardized 
sections—such as abstract, introduction, methods, protocol specifications, results, and discussion—
and is enriched with protocol tables, statistical summaries, and visualizations (e.g., hazard ratios with 
confidence intervals, covariate balance diagnostics). By automating the generation of such high-
quality outputs, TrialGenie not only accelerates the design cycle but also ensures transparency and 
reproducibility. Together, these components reflect TrialGenie’s capacity to transform the traditionally 
manual, expert-driven process of clinical trial design into an efficient, intelligent, and collaborative 
workflow. 
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Figure 1. (a) Role of five agent in TrialGenie. (b) Tools used in TrialGenie. (c) Agent interactions. 
(d) Several Capabilities supported in TrialGenie. (e) Generated final report, which mainly includes 
the trial emulation protocol and key results of the septic shock case. 
 
Agents  
Each agent in TrialGenie is designed to perform a specific set of tasks as summarized below, 
contributing to the overall efficiency and accuracy of the process to inform clinical trial design.   
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• Supervisor: This agent acts as the central decision-maker, synthesizing inputs from the human 
user and determining the start or end of the workflow. 

• Trialist: This agent retrieves and standardizes trial information from ClinicalTrials.gov and 
PubMed and then derives protocols of clinical trials to be simulated.  

• Informatician: The Informatician bridges trial information with real-world data, generating 
dataset ready for analysis. This agent matches trial eligibility criteria to EHR data, performs 
quality assurance, and finally constructs datasets for statistical analysis. 

• Clinician: The Clinician provides domain expertise by analyzing literature and answering 
clinical questions. This agent is responsible to identify related covariates and outcomes, 
validate trial design and interpret statistical analysis results. 

• Statistician: The Statistician conducts trial emulations and statistical analyses. This agent 
selects statistical methods, conducts outcome analyses, and generates results. 

TrialGenie for Clinical Trial Design  
Parse and Summarize Trial Information 
Given the user’s interest, it is critical to search for relevant information from historical trials, which is 
the main job of the trialist agent. It extracts, annotates, and standardizes the relevant information 
including eligibility criteria, treatment strategies, and outcomes from related trials. Figure 2 illustrates 
the main functionalities of the Trialist. 
 
First, the Trialist uses an LLM concept extraction prompt, designed and refined based on the 
Criteria2Query3.023 framework, to extract key components of the relevant trials, including eligibility 
criteria, treatment, and outcomes. Relevant clinical concepts are identified and annotated into 
domains such as Demographics, Condition, Device, Procedure, Drug, Measurement, Observation, 
and Visit, and their associated values along with the temporal information are extracted as well. We 
added additional instructions to the prompt for handling the components with multiple concepts (e.g. 
““Allergy to vitamin C, hydrocortisone, or thiamine””) or omitted concepts (e.g. “Patients < 18 years” 
with concept age omitted in the text). The original prompt is from Criteria2Query3.023 and our 
modified version is provided in Supplementary Table 1. 
 
Since identical concepts might be expressed differently across trials (e.g., “ICU” vs. “Intensive Care 
Unit”), the Unified Medical Language System (UMLS)24 dictionary and Observational Health Data 
Sciences and Informatics (OHDSI25) APIs are used to standardize concepts. Then, each component 
is matched with design patterns defined in the existing clinical trial ontologies.26,27 The mathematical 
and temporal operators (e.g., “less than” from “less than 24 hours”), as well as the related number 
and units, are identified by the temporal and value normalization modules from the Criteria2Query3.0 
framework23. 
 
All the concepts involved in the target trials are mapped to their concept ids via the standardized 
vocabulary in OMOP common data model. Specially, the concepts were represented based on the 
standard of OMOP CDM: condition (ICD-9/ICD-10), drug (RxNorm), measurement (LOINC), 
procedure (SNOMED CT).  This provided the necessary information for the informatician to generate 
the SQL queries for retrieving relevant information from the EHR data.  
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Figure 2. Functionalities of Trialist. 
 
Build Dataframe for Analysis 
Once the trial related information has been retrieved and standardized, the Informatician agent 
constructs a high-quality analytical dataframe that operationalizes the trial specifications using real-
world EHR data. The Informatician translates these trial related information, including eligibility 
criteria, treatment assignments, and outcome measures, into executable SQL queries, inspired by 
Criteria2Query3.0.23 Each criterion is rendered as a Common Table Expression (CTE),28 allowing for 
modular and sequential cohort construction. Simple eligibility rules—such as “Age ≥ 18 years”—are 
directly translated into SQL filters, while more complex conditions, such as time-sensitive 
interventions or compound dosage rules, are handled through nested logic and temporal 
joins.29,23,30,31 This structured querying ensures that the resulting cohort faithfully represents the 
target population defined by the trialist agent. 
 
To collect necessary covariates for downstream analysis, the Informatician collaborates with the 
Clinician agent, who provides advice on clinically relevant variables based on the disease context 
and trial objectives. These typically include demographic features, laboratory values, vital signs, 
diagnosis and medications. The selected covariates are then mapped to OMOP-compliant fields and 
integrated into the dataframe. 
 
With the cohort and covariates defined, the Informatician can extract data from EHR warehouse to 
build a comprehensive, analytics-ready dataframe. Treatment data includes drug administration 
records, dosage schedules, and timing; outcome data focuses on time-to-event endpoints such as 
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28-day mortality; and covariate data spans the pre-intervention period, capturing relevant clinical 
measurements. All variables are aligned temporally and semantically with the trial protocol. 
 
Data quality assurance is a critical part of this pipeline. The Informatician performs rigorous checks 
for completeness, logical consistency, and clinical plausibility.32–34 For example, outcome durations 
are validated to ensure non-negativity, and missingness is assessed across key variables. In cases 
of high missing rates, the agent may consult the Clinician to identify validated surrogate markers 
such as base excess. Outliers are addressed adaptively through imputation or exclusion 
strategies,35,36 depending on clinical context. The finalized output is a clean, structured dataframe 
containing patient-level rows with identifiers, eligibility flags, treatment indicators, outcome metrics, 
and baseline covariates—fully aligned with the elements needed for a trial protocol and ready for 
causal inference and statistical analysis. 
 
Statistical Analysis 
The Statistician agent in TrialGenie is responsible for translating the study protocol into a reproducible 
analytic workflow, applying appropriate statistical analysis, especially causal inference techniques, 
and summarizing the results. This agent’s methodology comprises five main components: (1) 
selecting balancing and modeling methods, (2) performing covariate balancing, (3) conducting 
survival analyses, and (4) generating a final report of the findings. 
 
First, the Statistician selects the best covariate balancing strategy and outcome analysis method. In 
TrialGenie, the agent evaluates across multiple options for balancing including Propensity Score 
Matching (PSM),37–39 Inverse Probability of Treatment Weighting (IPTW),40–42 or no balancing. The 
Statistician bases this selection on factors such as sample size, the distribution of covariates, and 
the research objective of estimating causal effects, which are determined by analyzing the input from 
the Informatician. If the dataset is moderately sized and sufficiently rich in covariates, PSM is often 
chosen and preferred for its intuitive design and interpretability.43 For each outcome analysis step, 
the Statistician can select from Cox Proportional Hazards,44–46 Kaplan-Meier estimation,47 parametric 
survival models, random survival forests (RSFs),48 or doubly robust methods.49 The final choice 
depends on checks of proportional hazards assumptions, the nature of the endpoints, and the need 
to balance interpretability (e.g., hazard ratio estimates) with predictive performance (e.g., random 
survival forests for high-dimensional data). 
 
Beyond the main analytical workflow of building trial protocols, balancing covariates, and conducting 
survival analyses, the Statistician agent in TrialGenie is able to deepen the investigation of treatment 
effects and refine the design of the emulated trial. Specifically, the Statistician can perform subgroup 
analysis and EC optimization to explore treatment heterogeneity and systematically evaluate the 
influence of different conditions on overall results. 
 
Following an initial survival analysis (for instance, via Cox Proportional Hazards), the Statistician 
agent may detect that the estimated treatment effect is not statistically significant in the overall 
sample. In such a scenario, the Statistician can perform subgroup analyses, wherein it prompts the 
Clinician to propose a covariate and threshold for splitting the cohort into two clinically relevant 
subgroups (e.g., patients with a severity marker below or above a certain level). The Statistician then 
reruns the survival model for each subgroup, comparing the hazard ratios and confidence intervals 
separately. This helps identify any sub-populations where the treatment might be more (or less) 
effective—an important consideration in critical care settings, where interventions can yield 
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heterogeneous responses. If no subgroup exhibits a significant effect or if multiple subgroup splits 
fail to uncover meaningful patterns, the process stops to avoid excessive data-driven exploration. 
 
Trial emulation also often requires iterative adjustments to eligibility criteria to balance sample size, 
comparability with the original trial, and clinical relevance. To systematically evaluate which inclusion 
or exclusion conditions exert the greatest impact on the estimated hazard ratio, the Statistician 
implements Trial Pathfinder.50 First, the agent enumerates different combinations (or “subsets”) of 
eligibility rules, computing a hazard ratio for each subset. Next, it treats the presence or absence of 
each criterion within these subsets as a contribution game, where Shapley values quantify how 
adding a particular criterion changes the measured treatment effect. If a criterion consistently shifts 
the hazard ratio toward or away from a significant result, it receives a larger absolute Shapley value, 
indicating a strong influence on outcomes. This is then relayed back to the Clinician or Supervisor, 
who can decide whether to retain, modify, or remove certain criteria considering both statistical 
impact and clinical imperatives. By systematically exploring all—or a carefully selected range of—
criterion combinations, the Statistician helps ensure that trial emulation decisions are informed by 
quantitative evidence as well as domain expertise. 
 
Finally, the Statistician synthesizes all findings into a cohesive report. This write-up includes baseline 
summaries of the matched or weighted populations, adjusted hazard ratios (or other metrics such as 
risk differences, depending on the selected model), confidence intervals, and p-values. Where 
relevant, the Statistician compares the emulated trial estimates to published results from the original 
randomized trial, highlighting potential sources of discrepancy such as sample size limitations, subtle 
differences in inclusion criteria (due to the limitations of EHRs), or unresolved confounding. This 
report is then sent to the Clinician agent for further interpretation, ensuring that any remaining clinical 
or methodological concerns are addressed before finalizing conclusions on the treatment’s 
effectiveness. 
 
Request Clinician Suggestions 
The Clinician agent in TrialGenie is designed to incorporate domain-specific medical expertise into 
the trial emulation workflow, ensuring that decisions about eligibility criteria, covariates, and study 
design remain clinically valid. Its methodology is structured around three core functions: retrieving 
and synthesizing medical literature, communicating clinical insights in a structured format, and 
collaborating iteratively with other agents to refine trial design and analysis. 
 
The Clinician agent operates through two primary tasks: (1) reviewing reports generated by the 
Statistician agent and either recommending modifications or approving the analysis, and (2) providing 
evidence-based recommendations to other agents at various stages of the trial emulation process. 
These tasks are facilitated by a retrieval-augmented generation (RAG)51 approach to gather relevant 
medical literature. Upon receiving a query—such as a request to confirm clinical plausibility or identify 
alternative covariates—the agent performs semantic searches over a biomedical knowledge base. 
Currently, this knowledge base comprises full-text PDFs or extracted abstracts stored in a FAISS 
index.52 By leveraging embeddings generated by a sentence-transformer, the Clinician agent 
identifies the most pertinent sections of the literature, such as published guidelines on sepsis 
management or prior studies on corticosteroids, and synthesizes the retrieved passages into concise, 
evidence-based responses. 
 
To ensure interoperability with other agents, the Clinician agent delivers its responses in 
standardized, machine-readable formats. For instance, when specifying eligibility criteria, it produces 
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annotations with tags such as <Condition>, <Drug>, or <Measurement> to ensure consistent 
handling of clinical concepts. If recommending a relaxation of the time window for septic shock 
diagnosis, the agent might return an output explicitly identifying the condition domain 
(<Condition>septic shock</Condition>) and the temporal modifier (<Temporal>within 48 hours 
after</Temporal>). This structured communication allows other agents, particularly the Informatician, 
to directly map the recommendations onto EHR queries without requiring manual interpretation. 
 
The Clinician agent collaborates iteratively with other agents throughout the trial emulation process. 
For example, when the dataset assembled by the Informatician is too small or when covariate 
balance is deemed insufficient by the Statistician, the Clinician proposes clinically acceptable 
modifications, such as relaxing exclusion criteria or substituting missing measurements with clinically 
equivalent variables. Similarly, for the task of report reviewing, if the Statistician identifies unexpected 
findings, the Clinician reviews surveys medical literature to determine whether the results align with 
established knowledge, propose additional adjustments, or investigate potential explanations for the 
discrepancies. 

Optimization 
RLHF53 is deployed in TrialGenie to iteratively improve the quality of the entire MAS with expert 
feedback. Its workflow includes three steps: (1) human feedback collection, (2) preference modeling, 
and (3) policy optimization with PPO54 and DPO.55  
 
Human Feedback Collection. The outputs generated by each agent are first reviewed by human 
experts. Then the experts provide either:  Ratings (e.g., 1–5) based on task-specific criteria such as 
correctness, clinical validity, or alignment with research goals; or Rankings, in which they compare 
multiple candidate outputs and indicate preference order.  
 
Preference Modeling. Within the dataset aggregated from the human feedback, rating data is used 
to train reward models that predict scalar-valued quality scores 𝑟(𝑥) for outputs 𝑥 and ranking data 
is converted into pairwise preferences (𝑥!, 𝑥"), indicating that output 𝑥!	is preferred over 𝑥"	for a 
given task. 
 
Policy Optimization with PPO and DPO. TrialGenie fine-tunes the policies of its LLMs using the 
following methods: (1) Proximal Policy Optimization (PPO54): PPO is employed when expert 
feedback provides scalar ratings, especially in tasks with well-defined correctness signals (e.g., SQL 
validity). Then the policy 𝜋#(𝑥) is optimized to maximize the expected reward: 

max
#
𝔼$~&![𝑟(𝑥)]. 

To ensure stability and prevent policy collapse, PPO uses a clipped surrogate objective: 
𝐿''((𝜃) = 	𝔼)[min	(𝑟)(𝜃)𝐴5) , clip(𝑟)(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴5))], 

where 𝑟)(𝜃) =
&!(+"|-")
&#$%(+"|-")

 is the importance sampling ratio, 𝐴5)	 is the advantage estimate, often 
approximated as 𝑟(𝑥)) − 𝑏 (𝑏 is a baseline). (2) Direct Preference Optimization (DPO55): DPO is 
employed when feedback is provided in the form of pairwise comparisons. Rather than estimating a 
separate reward model, DPO directly optimizes the policy using the relative likelihoods of preferred 
vs. non-preferred samples. The objective is to maximize: 

𝐿/'( = > log 	𝜎B𝛽(log 𝜋(𝑥!) − log 𝜋(𝑥"))D,
($&,$')
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where 𝜋(𝑥) is the policy’s probability of output 𝑥, 𝛽	is a temperature parameter controlling preference 
sharpness, and 𝜎(⋅) is the sigmoid function. 

Meetings 
In TrialGenie, meetings are designed as collaborative sessions that enable agents to share expertise, 
refine specific tasks, and ensure high-quality output, inspired by Swanson et al.56 Depending on the 
specific task, meetings are categorized into two types, including team meetings and individual 
meetings. 
 
Team Meetings 
Team meetings in TrialGenie bring together all the agents to address complex, high-level issues 
requiring interdisciplinary expertise. These meetings are organized by the Supervisor, who sets the 
meeting agenda and synthesizes inputs. The discussions typically revolve around broad questions, 
such as optimizing trial eligibility criteria or selecting outcome analysis methods. For instance, 
consider a meeting focused on addressing high missing rates in lactate levels within the dataset. The 
Supervisor initiates the discussion by outlining the agenda: assessing whether surrogate variables 
like base excess can replace lactate levels. Each agent contributes based on their expertise. The 
Informatician presents data on the extent of missingness and the feasibility of implementing surrogate 
measures. The Clinician evaluates the clinical validity of base excess as a substitute, referencing 
medical literature from PubMed or other relevant sources. The Statistician weighs the statistical 
implications, particularly the impact on covariate balancing. The discussion unfolds over multiple 
rounds, with agents refining their responses based on feedback. The Supervisor consolidates the 
insights, approves the use of base excess, and assigns follow-up tasks to the Informatician for 
implementation. These meetings are essential for resolving ambiguities and achieving consensus on 
critical decisions. By organizing open discussions among the agents, team meetings ensure that 
TrialGenie leverages diverse expertise to navigate the inherent complexities of clinical trial design. 
 
Individual Meetings 
Individual meetings focus on task-specific activities, typically assigned to a single agent, with optional 
feedback from other agents or the Supervisor. These meetings allow for in-depth execution and 
refinement of specialized tasks, such as coding SQL queries or running outcome analysis models. 
An example of an individual meeting could involve the Informatician tasked with generating a dataset 
based on the eligibility criteria. The agenda specifies the need to construct SQL queries that 
incorporate relaxed temporal conditions for septic shock diagnosis. The Informatician writes the initial 
SQL queries, reviews and refines the queries iteratively, and finally outputs the dataset, accompanied 
by a summary of modifications and explanations. These individual meetings are important for 
maintaining the quality of the agent’s outputs. 

Results 
We evaluated TrialGenie’s performance by assessing the specialized capabilities of each agent using 
MIMIC-IV57 database. We selected a diverse evaluation set of clinical trials covering various diseases, 
interventions, and trial phases. Our evaluation spanned four core dimensions: (1) entity extraction 
and trial parsing by the Trialist agent, (2) SQL query generation by the Informatician, (3) causal 
inference and outcome analysis by the Statistician, and (4) clinical reasoning and recommendation 
quality by the Clinician. Across these tasks, we benchmarked several LLMs, including GPT-4o58 and 
three locally deployed LLMs Phi-4,59 DeepSeek-R1:14b60 (hereafter referred to as DeepSeek-R1), 
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and Gemma-3:12b61 (hereafter referred to as Gemma 3), to evaluate their impact on agent 
performance. 
 

 
 
Figure 3. Evaluation of the agents in TrialGenie. (a) Comparison of entity parsing performance among 
four LLMs: GPT-4o, Phi-4, DeepSeek-R1, and Gemma 3, using precision, recall, and F1-score. GPT-
4o achieved the highest recall (98.6%) and precision (92.3%), while Gemma 3 demonstrated the 
lowest performance. (b) Frequency of error types in SQL generation by the Informatician agent 
across different trials. GPT-4o had the fewest errors, whereas DeepSeek-R1 and Gemma 3 exhibited 
more errors, particularly in concept mapping and syntax formulation. (c) Evaluation of Clinician agent-
generated responses based on readability, correctness, relevance, coherence, creativity, and 
usefulness. GPT-4o consistently outperformed other models, achieving the highest scores across all 
dimensions. (d) Performance comparison of estimated hazard ratios (HR) against ground truth HR 
values (0.5, 1.0, 2.0, 3.0) of the Statistician agent. All agents produced estimates closest to the 
ground truth across all scenarios. 
 
Evaluations on Trialist  
For the Trialist, evaluations concentrate on data preparation and entity parsing. Eligibility criteria of 
the 5 selected trials were manually annotated by two biomedical informatics experts to create a gold 
standard, and inter-annotator agreement is measured using Cohen’s Kappa,62 targeting a score of 
≥0.7. Metrics for entity parsing include: (1) Precision: The proportion of correctly identified concepts 
among all extracted concepts. (2) Recall: The proportion of correctly identified concepts out of all 
concepts in the gold standard. (3) F1-score: The harmonic mean of Precision and Recall.  

Dataset Model Ground Truth
HR

Estimated
HR

Estimated
95% CI

Synthetic
Dataset

GPT-4o 1.0 1.0383 (0.8958, 1.2034)

Phi 4 1.0 1.0383 (0.8958, 1.2034)

DeepSeek-R1 1.0 1.0383 (0.8958, 1.2034)

Gemma 3 1.0 1.0383 (0.8958, 1.2034)

Figure 3: Evaluations

ba
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Figure 3.
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Results are presented in Figure 3(a). A total of 43 concepts were annotated across the five selected 
clinical trials. GPT-4o achieved the best performance in identifying these concepts, with a recall of 
98.6% and precision of 92.3%. The high recall indicates that most of the ground-truth concepts (42 
out of 43) can be correctly recognize. In comparison, the highest performance among the other 
models was achieved by Gemma, with a recall of 82.2% and precision of 85.7%. Notably, GPT-4o 
significantly outperformed other models in handling components that involve multiple concepts or 
omitted scopes, especially when enhanced with our prompt augmentation strategy. For example, in 
the criterion “Allergy to vitamin C, hydrocortisone, or thiamine,” GPT-4o accurately extracted the 
concepts “allergy to vitamin C,” “allergy to hydrocortisone,” and “allergy to thiamine,” while other 
models returned fragmented or incomplete extractions such as “allergy,” “vitamin C,” “hydrocortisone,” 
and “thiamine.” In another case, for the criterion “patients < 18 years,” GPT-4o correctly inferred the 
omitted concept “age,” which other models failed to recognize. 
 
We selected a use case as effect of hydrocortisone in septic shock patients to further evaluate the 
performance within more clinical trials. Besides NCT03872011 and NCT04134403, 15 more clinical 
trials of this use case were selected and annotated to evaluate the trialist, with the same procedure 
and metrics. The results are shown in Supplementary Table 2. Similarly, GPT-4o outperforms the 
other models in identifying the 340 concepts, with a recall of 95.7% and precision of 86.8%.  
 
Evaluations on Informatician  
For the Informatician, evaluations focus on the SQL generation following Criteria2Query3.0,23  using 
five clinical trials parsed by Trialist. Each generated SQL query is reviewed to identify potential errors 
manually. To ensure query correctness, the generated SQL statements were executed on the 
database, and their output was compared with expected cohort retrieval results.  
 
Errors identified in the SQL queries were classified into seven categories (Supplementary Table 3), 
broadly falling into two types: semantic errors and structural errors.23 Semantic errors included logic 
errors, where relational, temporal, or numerical expressions were misinterpreted (e.g., incorrect 
handling of age restrictions), concept omissions, where extracted clinical concepts were not 
incorporated into the query, and incorrect concept mapping, where the linkage between extracted 
criteria and database standard terminologies was inaccurate. Structural errors encompassed function 
misuse, integrity constraint violations, schema reference errors, and syntax errors, which affected 
the overall execution and validity of the queries. 
 
We analyzed all four LLMs, with a focus on how accurately each model translated extracted trial 
information into executable SQL queries. The summarized results are shown in Figure 3b while 
detailed results are provided in Supplementary Table 4. Among all error types, incorrect concept 
mapping was the most frequent (41.18%), followed by syntax errors (31.18%), and concept missing 
errors (14.71%). These patterns suggest that even when clinical concepts are correctly identified, 
they are often misrepresented or omitted in the final query construction. Logic errors were relatively 
rare (2.35%) but still indicative of deeper inconsistencies in model reasoning. 
 
Among the four LLMs, GPT-4o demonstrated the best performance, with only 12 total errors across 
all trials. The majority of its issues were syntax-related (58.33%, n=7), followed by incorrect concept 
mapping (33.33%, n=4), and a single instance of concept omission (8.33%, n=1). Importantly, GPT-
4o committed no logic or integrity constraint errors, underscoring its strong consistency in both 
semantic interpretation and query structure. These results highlight GPT-4o’s superior capacity to 
preserve the fidelity of trial information. Phi-4 showed moderate performance with a total of 47 errors. 
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It exhibited a similar error distribution pattern: 48.94% syntax errors (n=23), 40.43% incorrect concept 
mappings (n=19), and 8.51% concept omissions (n=4). Only one logic error (2.13%) was observed. 
Although its structural outputs were mostly valid, the relatively high proportion of concept mapping 
issues suggests that Phi-4 occasionally struggled to align extracted entities with the underlying 
OMOP schema. DeepSeek-R1 had the highest total error count (n=59), reflecting substantial 
challenges in both semantic and syntactic reliability. Incorrect concept mappings accounted for 42.37% 
(n=25) of its errors, and syntax issues made up 40.68% (n=24), alongside 9 concept omissions 
(15.25%) and one logic error. These results indicate difficulty in both capturing nuanced medical 
terminology and composing valid, executable queries, particularly for complex eligibility definitions. 
Gemma 3, while slightly outperforming DeepSeek-R1 in total error count (n=52), exhibited a similar 
pattern. Its errors were predominantly due to incorrect concept mapping (42.31%, n=22) and syntax 
issues (36.54%, n=19), along with 10 concept omissions (19.23%) and one logic error. Compared to 
Phi-4 and GPT-4o, Gemma 3 showed greater difficulty in preserving the completeness of clinical 
intent during SQL translation, especially in trials involving hierarchical or multi-part eligibility 
conditions. In conclusion, GPT-4o consistently outperformed the other models, making it the most 
reliable choice in the Informatician. 
 
The evaluation results of GPT-4o further demonstrated a correlation between error frequency and 
eligibility criteria complexity63 which reflects the number of intricate clinical concept patterns within a 
single phrase (Table 1). The trial NCT03872011 with the highest complexity score63 (0.64) exhibited 
the most errors (n=5), while the trial NCT02856698 with the lowest complexity score (0.25) had the 
fewest errors (n=1). This trend suggests that query accuracy decreases as eligibility criteria become 
more complex, highlighting challenges in parsing and translating intricate clinical conditions into SQL 
queries. Overall, Informatician showed promising SQL generation capabilities but faced difficulties in 
handling high-complexity criteria. The results are consistent with previous findings in 
Criteria2Query3.0.23  
 
Table 1. Complexity of eligibility criteria of these five clinical trials. 

Trial ID Number of 
criteria 

Number of simple 
criteria 

Number of complex 
criteria 

Complexity 
score 

NCT00475852 7 3 4 0.57 
NCT02856698  4 3 1 0.25 
NCT03872011 11 4 7 0.64 
NCT04134403 10 7 3 0.30 
NCT06091982 5 3 2 0.40 

 
Evaluations on Statistician 
For the Statistician, we primarily evaluate the causal inference methods. Covariate balance is 
measured using standardized mean differences (SMD),64 aiming for values below 0.1. The accuracy 
of survival estimates is compared against published literature, while consistency with known trial 
results is assessed. Generated reports are also reviewed for clarity and alignment with research 
objectives. We also performed several evaluations of the various components of the Statistician using 
synthetic datasets. 
 
For the first evaluation, we created a synthetic dataset with 1,000 subjects and 10 covariates sampled 
from a standard normal distribution. Treatment assignment was imbalanced using a logistic function 
based on sofa and age. Survival times were simulated under an exponential proportional hazards 
model with a baseline hazard of 0.1 and treatment effects corresponding to ground truth hazard ratios 
of 0.5, 1, 2, and 3. Random censoring was incorporated using an exponential distribution, and the 
ground truth average treatment effect (ATE) was defined as the risk difference at a 10-time unit 
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horizon. Four different large language model (LLM) bases (GPT-4o, Phi-4, DeepSeek-R1, and 
Gemma 3) were used to drive agent decision-making and model selection (Table 2). 
 
Across all LLMs, propensity score matching was consistently chosen as the balancing method by the 
Statistician. For a ground truth HR of 0.5, the Statistician estimated a hazard ratio of 0.6345 (95% CI: 
0.5448–0.7389) and an ATE of –0.0997, compared with a ground truth ATE of –0.1759. When the 
true effect was null (HR = 1), the estimated HR was 1.0383 (95% CI: 0.8958–1.2034) with an ATE of 
0.0244 (ground truth ATE = 0). For a moderate effect (HR = 2), the estimated HR was 1.7524 (95% 
CI: 1.5152–2.0267) and the ATE was 0.1461 (ground truth ATE = 0.1633). Finally, for HR = 3, the 
Statistician produced an estimated HR of 2.8074 (95% CI: 2.4330–3.2394) with an ATE of 0.2225, 
versus a ground truth ATE of 0.2832. These estimates were robust across all LLMs and outcome 
model selections, demonstrating that the Statistician can reliably recapitulate the ground truth 
parameters in trial emulation. 
 
In the second evaluation, we generated a synthetic survival dataset with 1,000 subjects containing 
two covariates (sofa and age) and a binary treatment. In the overall (unstratified) analysis, the 
treatment effect was engineered such that the average hazard ratio (HR) was null (i.e., no significant 
treatment effect). However, the treatment effect was designed to interact with the sofa score such 
that, when subjects were grouped by a clinically meaningful cutoff, significant subgroup effects would 
emerge. Specifically, for treated subjects, the log hazard effect was set to +1 when the sofa score 
was below a threshold (e.g., <8.0) and –1 when the score was above that threshold; a constant was 
subtracted to force the marginal (unstratified) HR to be 1. We evaluated the ability of our multi-agent 
framework (incorporating Statistician and Clinician agents) to (1) detect the absence of an overall 
treatment effect and (2) uncover significant subgroup effects by stratifying on sofa. Three different 
large language model (LLM) bases (GPT-4o, Phi-4, and  DeepSeek-R1) were deployed to drive agent 
decisions regarding subgroup creation and subsequent survival analysis using Cox proportional 
hazards models. 
 
Table 2. Evaluation of Statistician’s ability to recapitulate ground truth effect sizes from synthetic 
datasets. 

LLM Balancing Method 
Chosen Outcome 

Models 
Estimated 

HR 
Estimated 

CI 
Ground Truth 

HR 
Estimated 

ATE 
Ground Truth 

ATE 

GPT-4o 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards, Kaplan-
Meier Estimator 0.6345 (0.5448, 0.7389) 0.5 -0.0997 -0.175934 

Phi-4 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards, Random 

Survival Forest 0.6345 (0.5448, 0.7389) 0.5 -0.0997 -0.175934 

 DeepSeek-R1 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards, Random 
Survival Forests 0.6345 (0.5448, 0.7389) 0.5 -0.0997 -0.175934 

 Gemma 3 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards Regression 

   0.6345 
(0.5448, 0.7389) 0.5 -0.0997 -0.175934 

GPT-4o 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards, Kaplan-
Meier Estimator 1.0383 (0.8958, 1.2034) 1 0.0244 0 
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Phi-4 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards, Random 

Survival Forest 1.0383 (0.8958, 1.2034) 1 0.0244 0 

 DeepSeek-R1 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards, Random 
Survival Forests 1.0383 (0.8958, 1.2034) 1 0.0244 0 

 Gemma 3 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards Regression 

1.0383 
(0.8958, 1.2034) 1 0.0244 0 

GPT-4o 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards, Kaplan-
Meier Estimator 1.7524 (1.5152, 2.0267) 2 0.1461 0.16326836 

Phi-4 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards, Random 

Survival Forest 1.7524 (1.5152, 2.0267) 2 0.1461 0.16326836 

DeepSeek-R1 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards, Random 
Survival Forests 1.7524 (1.5152, 2.0267) 2 0.1461 0.16326836 

 Gemma 3 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards Regression 

1.7524 
(1.5152, 2.0267) 2 

0.1461 0.16326836 

GPT-4o 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards, Kaplan-
Meier Estimator 2.8074 (2.4330, 3.2394) 3 0.2225 0.28317249 

Phi-4 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards, Random 

Survival Forest 2.8074 (2.4330, 3.2394) 3 0.2225 0.28317249 

DeepSeek-R1 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards, Random 
Survival Forests 2.8074 (2.4330, 3.2394) 3 0.2225 0.28317249 

Gemma 3 
Propensity Score 
Matching (PSM) 

Cox Proportional 
Hazards Regression 

2.8074 
(2.4330, 3.2394) 3 0.2225 0.28317249 

 
 
Table 3 shows the results. Unadjusted Cox modeling of the full dataset revealed no significant 
treatment effect. However, after stratification by sofa, subgroup analyses produced statistically 
significant differences. For analyses driven by GPT-4o and Phi-4, subjects with “SOFA < 8.0” had an 
estimated HR of 1.3849 [95% CI: 1.2101, 1.5850] while those with “SOFA ≥ 8.0” had an estimated 
HR of 0.7280 [95% CI: 0.5921, 0.8950]. In contrast, the DeepSeek-R1 and Gemma 3 driven analysis 
identified a slightly different cutoff (SOFA < 7.0 vs. SOFA ≥ 7.0) yielding HRs of 1.3443 [95% CI: 
1.1760, 1.5366] and 0.8286 [95% CI: 0.6853, 1.0019], respectively. These findings demonstrate that 
while the overall analysis recapitulated the engineered null effect, appropriate stratification by the 
effect modifier sofa uncovered significant heterogeneity in treatment response. The consistency 
across different LLM bases supports the robustness of our multi-agent evaluation framework. 
 
Table 3. Evaluation of Statistician’s ability to recapitulate ground truth effect sizes after subgroup 
stratification. 
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LLM 
Number of Subgroup 

Analyses Done 
Significant Stratification 

Levels Estimated HR Estimated CI 

GPT-4o 1 
SOFA < 8.0 
SOFA ≥ 8.0 

1.3849 
0.7280 

(1.2101, 1.5850) 
(0.5921, 0.8950) 

Phi-4 2 
SOFA < 8.0 
SOFA ≥ 8.0 

1.3849 
0.7280 

(1.2101, 1.5850) 
(0.5921, 0.8950) 

 DeepSeek-R1 1 
SOFA < 7.0 
SOFA ≥ 7.0 

1.3443 
0.8286 

(1.1760, 1.5366) 
(0.6853, 1.0019) 

Gemma 3 1 
SOFA < 7.0 
SOFA ≥ 7.0 

1.3443 
0.8286 

(1.1760, 1.5366) 
(0.6853, 1.0019) 

 
We evaluated our EC optimization algorithm by creating synthetic datasets with known ground-truth 
importances for each EC and then measuring how closely the Monte Carlo-based Shapley estimator 
recovered these importances under varying numbers of ECs. For each run, we drew a specified 
number of ECs (from 2 to 20), sampled true importances uniformly from a predefined range, and 
combined these with a baseline hazard-ratio (HR) value. We enumerated every possible subset of the 
ECs and generated noisy HRs by adding Gaussian noise (standard deviation = 0.5) to each subset’s 
baseline plus its summed importances. Our algorithm then performed randomized permutations of 
the ECs to compute incremental differences in HR from the empty to the full set of rules, up to a 
maximum of 1000 iterations or until the standard error of the mean (SEM) reached a small tolerance 
(1e-3). We compared each criterion’s estimated Shapley value against its ground-truth importance 
using mean absolute error (MAE). Supplementary Table 5 shows the MAE for varying number of ECs. 
 
Supplementary Table 5 shows that, even in the presence of moderate noise, the algorithm converges 
effectively and typically produces low MAE values, indicating good agreement between the estimated 
Shapley values and the known true importances. 
 
Evaluations on Clinician 
The Clinician agent is evaluated for its ability to integrate medical expertise into the workflow. A 
questionnaire based on a 5-point Likert scale65 assesses the relevance, clarity, and accuracy of the 
Clinician’s recommendations.23 Additionally, the agent’s efficiency in refining trial designs and 
resolving discrepancies is measured through qualitative feedback from domain experts. 
 
Table 4: Questionnaire and mean scores with standard deviations on Clinician-generated responses. 

Category Question 
Mean score (standard deviation) 

GPT-4o Phi-4 DeepSeek-
R1 Gemma 3 

Readability 

The overall writing format is easy to 
understand. 4.92 (0.13) 4.59 (0.35) 4.80 (0.17) 4.02 (0.25) 

The response is well-structured and logically 
organized (e.g., proper use of paragraphs, 
bullet points). 

4.92 (0.13) 4.49 (0.37) 4.80 (0.17) 4.02 (0.25) 

The terminology and language style are 
appropriate for the intended audience. 4.92 (0.13) 4.59 (0.35) 4.81 (0.18) 4.02 (0.25) 

Correctness 

The response accurately conveys factual 
information and is free from hallucinations. 4.85 (0.26) 4.57 (0.58) 4.41 (0.32) 3.61 (0.45) 

The logical reasoning in the response is 
sound and follows expected principles. 4.80 (0.23) 4.55 (0.54) 4.35 (0.33) 3.63 (0.44) 

The response correctly uses technical or 
domain-specific terms when applicable. 4.80 (0.23) 4.58 (0.53) 4.36 (0.32) 3.69 (0.41) 

Relevance The response directly addresses the question 
or task given. 4.88 (0.12) 4.74 (0.33) 4.73 (0.18) 4.07 (0.04) 
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The information provided is sufficiently 
detailed without unnecessary content. 4.88 (0.12) 4.60 (0.49) 4.76 (0.17) 4.07 (0.04) 

The response includes relevant supporting 
details, examples, or citations if required. 4.49 (0.70) 4.24 (0.65) 4.33 (0.81) 4.07 (0.04) 

Coherence 

The response maintains internal logical 
consistency throughout. 4.63 (0.52) 4.40 (0.72) 4.46 (0.70) 3.80 (0.40) 

If multiple responses are generated for the 
same prompt, they are consistent with each 
other. 

4.68 (0.56) 4.43 (0.75) 4.53 (0.75) 3.81 (0.39) 

The response avoids contradictions or 
conflicting statements. 4.68 (0.56) 4.50 (0.81) 4.53 (0.75) 3.80 (0.40) 

Creativity 

The response demonstrates originality and 
innovative reasoning. 3.74 (0.95) 3.74 (0.97) 3.69 (1.00) 3.58 (0.51) 

The answer provides novel insights beyond 
common knowledge. 3.89 (0.89) 3.88 (0.91) 3.81 (0.93) 3.57 (0.50) 

The response presents multiple perspectives 
when appropriate. 4.18 (1.02) 4.16 (1.00) 4.01 (0.93) 3.58 (0.51) 

Usefulness 

The response is useful for the intended 
application (e.g., SQL generation, 
summarization, question answering). 

4.92 (0.13) 4.56 (0.30) 4.54 (0.26) 3.87 (0.35) 

The generated response is easy to modify or 
refine for further use. 4.90 (0.12) 4.58 (0.33) 4.57 (0.22) 3.86 (0.34) 

The response format aligns with the 
requirements of the target application. 4.87 (0.18) 4.73 (0.32) 4.69 (0.08) 3.87 (0.35) 

Average Score 4.66 4.44 4.45 3.83 
 
Figure 3c presents the evaluation of Clinician-generated responses across five key dimensions: 
readability, correctness, relevance, coherence, and usefulness, with detailed subcategory scores 
provided in Table 4. Overall, GPT-4o outperformed all other models, achieving the highest average 
score of 4.66. DeepSeek-R1 and Phi-4 showed comparable overall performance (4.45 and 4.44, 
respectively), while Gemma 3 lagged behind with a significantly lower average score of 3.83. 

• Readability: GPT-4o achieved perfect consistency in readability, scoring 4.92 across all 
aspects, including writing clarity, logical structure, and appropriate terminology. DeepSeek-R1 
followed with solid scores around 4.80–4.81, showing well-organized responses with minor 
gaps in structure. Phi-4 scored slightly lower (4.49–4.59), suggesting occasional 
inconsistencies in formatting or flow. In contrast, Gemma 3 consistently underperformed in 
this dimension, with all readability items scoring 4.02, indicating challenges in producing 
clearly formatted and accessible clinical content. 

• Correctness: GPT-4o again led in this category, scoring 4.85 for factual accuracy and 4.80 in 
logical reasoning and domain-specific usage, reflecting both precision and reasoning strength. 
Phi-4 was close behind (4.55–4.58), though with occasional factual or terminology slips. 
DeepSeek-R1 showed greater variability (4.35–4.41), pointing to sporadic hallucinations66 or 
flawed reasoning. Gemma 3 trailed significantly, especially in factual correctness (3.61) and 
logical soundness (3.63), with further struggles in technical accuracy (3.69), underscoring its 
relative unreliability in clinical contexts. 

• Relevance: GPT-4o achieved near-perfect scores in addressing tasks directly (4.88) and 
delivering the right level of detail (4.88), though its supporting citations could still improve 
(4.49). DeepSeek-R1 remained competitive (4.73–4.76), while Phi-4 had a wider spread 
(4.24–4.74), with occasional digressions or missing justifications. Gemma 3, despite being 
consistent, scored only 4.07 across all subcategories, suggesting generally on-topic but overly 
generic responses with limited depth or support. 

• Coherence: GPT-4o performed strongly again (4.63–4.68), maintaining logical consistency 
across individual and multiple responses. DeepSeek-R1 showed fairly coherent outputs 
(4.46–4.53), but Phi-4 was less stable (4.40–4.50), occasionally presenting contradictions. 
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Gemma 3’s coherence scores (3.80–3.81) point to structural fragility, with frequent internal 
inconsistencies or mismatches between ideas. 

• Creativity: All four models showed room for growth in this aspect. GPT-4o displayed relatively 
higher creativity (3.74–4.18), especially in offering multiple perspectives. Phi-4 and 
DeepSeek-R1 were comparable (~3.7–4.1), while Gemma 3 again lagged with a narrow range 
(3.57–3.58). 

• Usefulness: GPT-4o stood out as the most practically useful model, scoring 4.92 for 
application fit and 4.90 for modifiability. DeepSeek-R1 (4.54–4.69) and Phi-4 (4.56–4.73) were 
also rated as useful, but showed occasional formatting or specificity limitations. Gemma 3 
scored the lowest in this category (3.86–3.87), indicating its output often lacked polish or 
adaptability. 

In summary, GPT-4o delivered the most accurate, relevant, and clinically useful responses, making 
it the clear leader among all evaluated LLMs. DeepSeek-R1 and Phi-4 demonstrated decent usability 
with minor flaws, while Gemma 3 consistently underperformed across nearly all dimensions, 
indicating that its clinical reasoning and formatting still require significant improvement for integration 
in expert workflows. 
 
Showcases 
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Figure 4. Showcases on three clinical trials. 
 
To demonstrate how TrialGenie operates on diverse clinical questions, we present three separate 
disease-based examples using Phi-4, each reflecting distinct trial emulation scenarios. These 
examples illustrate how the Supervisor, Trialist, Informatician, Clinician, and Statistician agents 
coordinate to parse protocols, handle eligibility criteria, select covariates, balance confounders, and 
produce final analyses. 
 
Case 1: Impact of Nesiritide in Acute Heart Failure Patients 
In this first demonstration, TrialGenie emulated a clinical trial (NCT00475852) assessing nesiritide’s 
impact on heart failure outcomes (Supplemental File 1). The Supervisor initially requested a detailed 
target trial protocol, and the Trialist retrieved inclusion criteria specifying patients hospitalized for 
acute decompensated heart failure or diagnosed within 48 hours after admission, while excluding 
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hydrocortisone in treating sepsis patients within the 
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Trialist: Provides Inclusion/Exclusion Criteria
Trialist retrieves ADHF criteria, excludes high-risk 

hypotension, etc. Defines nesiritide as treatment and 
30-day mortality as outcome.

Informatician: Instructs Clinician on Covariates
Informatician tells Clinician to select relevant 

covariates from a master list, specifying format for data 
collection.

Clinician: List Covariates
Clinician provides comprehensive set: demographics, 

labs, vitals, organ function scores (e.g., SOFA), etc.
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those at high risk of hypotension, those with systolic blood pressure above 180 mmHg, and 
individuals presenting severe structural heart conditions or prior nesiritide enrollment. The Supervisor 
and Clinician then collaborated to identify a comprehensive set of covariates, including age, gender, 
lactate, arterial blood gases, renal function markers, coagulation parameters, and neurological and 
cardiovascular metrics. These covariates were provided in a structured format to the Informatician, 
who constructed a dataset containing 6971 rows aligned with the specified trial criteria. 
 
Upon receiving this dataset, the Statistician applied propensity score matching to reduce confounding 
between patients treated with nesiritide versus controls. There was one persistently unbalanced 
covariate (nrbc), but balance between the two treatment groups was improved for the remaining 
variables. Survival analyses then employed two methods. A Cox proportional hazards model 
indicated a hazard ratio near 0.73 (95% confidence interval approximately 0.63–0.84), suggesting a 
statistically significant reduction in adverse event risk among nesiritide-treated patients. A random 
survival forests approach supported these findings by demonstrating good predictive accuracy (C-
index of about 0.79), although the short-term hazard ratio at 30 days remained near neutral (about 
0.98). 
 
The final report, titled “Emulating the Impact of Nesiritide in Heart Failure Patients: A Propensity 
Score-Matched Analysis,” (Supplemental File 1) documented a slightly lower incidence of adverse 
events in the nesiritide group (9.57%) compared to controls (10.80%). The Clinician reviewed the 
results and recommended refining matching to address the unbalanced nrbc covariate, as well as 
conducting subgroup analyses to identify patient subsets that might derive particular benefit. Despite 
these limitations, the study’s main conclusion—namely that nesiritide may offer a clinically 
meaningful decrease in adverse event risk—was consistent with existing evidence, illustrating 
TrialGenie’s capacity to reproduce and refine insights from established clinical trials. 
 
Case 2: Effect of Renal Replacement Therapy for Severe Acute Kidney Injury 
In this second example, TrialGenie was tasked with emulating a study to determine whether renal 
replacement therapy (RRT) affects 90-day mortality among patients diagnosed with severe acute 
kidney injury (AKI) (Supplemental File 2). The Supervisor directed the Trialist to parse a target trial 
protocol requiring patients to be at least 18 years old with AKI, excluding those who had prior dialysis 
history, ongoing renal failure in dialysis, or incomplete data. The Clinician then selected covariates 
ranging from age, lactate, electrolytes, and coagulation parameters to scores like SOFA, which the 
Informatician used to assemble and clean a dataset of 5562 rows. Once the data was prepared, the 
Statistician applied propensity score matching to balance those who received RRT against those 
who did not, selecting Cox proportional hazards and random survival forests for survival analysis. 
Neither model indicated a significant difference in outcomes: the Cox model’s hazard ratio (about 
0.875) was not statistically significant, and the random survival forests analysis, despite 
demonstrating a high C-index (~0.806), yielded a hazard ratio near unity. Subgroup analyses 
stratified by gender, age ≥65, lactate ≥2.0, or sodium ≥140 similarly found no statistically significant 
treatment effects. 
 
These findings suggest either that RRT had no meaningful impact within the MIMIC-IV study 
population or that factors such as sample size and unmeasured confounding limited detection of a 
true effect (Supplemental File 3). The Clinician considered additional covariates or larger cohorts to 
refine the emulation but concluded that the current dataset could not provide conclusive evidence. 
Overall, the final report emphasizes the need for expanded patient samples or alternative methods 
to clarify RRT’s role in severe AKI management, demonstrating how TrialGenie manages null results 
and negative findings as systematically as it does positive ones. 
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Case 3: Effect of Hydrocortisone in Septic Shock Patients 
In the third example, TrialGenie emulated the design of a trial (NCT04134403) evaluating 
hydrocortisone therapy in patients with septic shock (Supplemental File 3). The Supervisor first 
requested the Trialist to parse a protocol that stipulated a 24-hour window since ICU admission, 
vasopressor dependence (for maintaining adequate mean arterial pressure), lactate >2.0 mmol/L, 
and age ≥18 years. Exclusions encompassed pregnancy, G6PD deficiency, acute stroke or coronary 
syndrome, major hemorrhage, burn, trauma, or prolonged vasopressor use (>24 hours before 
randomization). The Clinician then selected an extensive set of covariates—spanning blood gases, 
electrolytes, organ function markers, and severity scores—to be curated by the Informatician. The 
resulting dataset contained 1153 patients meeting the inclusion and exclusion criteria. 
 
Upon finalizing data cleaning, the Statistician chose propensity score matching to reduce 
confounding between patients receiving hydrocortisone (50 mg every 6 hours for up to 7 days) and 
controls. Two primary approaches—Cox Proportional Hazards and Kaplan-Meier estimation—were 
used to assess 28-day mortality. After identifying several unbalanced covariates, the Clinician 
proposed substituting specific measurements (e.g., ALT for AST, bicarbonate for anion gap, GCS 
total score for its individual components) to improve data balance and maintain clinical relevance. 
 
Post-matching analyses indicated that hydrocortisone did not show a statistically significant benefit 
on survival when controlling for confounders (Supplemental File 3). While not significant, slight harm 
was shown from the use of steroids. These findings did not align with the original trial’s results, 
suggesting that hydrocortisone may differ in treatment effect dependent on the cohort. Future efforts 
could explore refining eligibility criteria, as indicated by the SHAP-based optimization results. Overall, 
this showcase highlights how TrialGenie can rigorously reproduce an existing protocol, refine data 
quality, and generate robust causal inferences for critical-care interventions. 

Discussions 
TrialGenie represents an advancement in the use of agentic systems for empowering clinical trial 
design. By integrating role-specialized LLM agents, TrialGenie transforms a traditionally manual, 
expertise-intensive and time-consuming CTD process into an autonomous pipeline.  
 
Among the five agents, the Trialist demonstrated its capability in retrieving and standardizing trial 
information, achieving a high F1-score of 95.4% using GPT-4o. The Informatician agent translated 
these parsed elements into SQL queries, showing that LLMs can map trial information into structured 
cohort definitions. The Statistician agent effectively executed causal inference workflows—matching 
gold-standard hazard ratio estimates across synthetic and real-world data—while the Clinician agent 
ensured medical validity and interpretability through structured reasoning grounded in biomedical 
literature. 
 
Notably, GPT-4o consistently outperformed locally deployed models (Phi-4, DeepSeek-R1, and 
Gemma 3) across tasks, particularly in logical accuracy, syntactic correctness, clinical relevance. Our 
analysis of error types—most notably incorrect concept mapping and concept omission—points to 
persistent challenges in bridging trial information with data operations, especially in settings involving 
complex logic. These findings reinforce the need for systems that can reason not only across 
language and code, but also across clinical abstraction layers. 
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By modularizing clinical trial design into distinct roles, i.e., Supervisor, Trialist, Informatician, Clinician, 
and Statistician, TrialGenie reflects the natural division of efforts in clinical research teams. The 
architecture enables agents to iterate collaboratively with refining eligibility definitions, proposing 
surrogate covariates, or adjusting statistical models, which helps mirror the dynamic, interdisciplinary 
nature of clinical trial design in practice. The integration of Reinforcement Learning from Human 
Feedback (RLHF) further aligns model behavior with human experts, allowing agents to improve the 
response quality. These designs allow TrialGenie to function not merely as a pipeline, but as a 
learning ecosystem that continuously refines both knowledge and execution. 
 
From a broader perspective, TrialGenie offers a new paradigm for integrating real-world evidence 
(RWE) into clinical research. Traditional pipelines often require substantial human intervention to 
iteratively reconcile protocol design, making scalability difficult. TrialGenie’s agentic intelligence 
bridges this gap by autonomously surfacing data issues (e.g., missingness), querying domain 
knowledge via RAG, and adjusting the trial design accordingly. Such capability is particularly powerful 
in the domains where real-time insights are essential and trial feasibility is often constrained. 
 
Several important directions remain for future exploration. First, many clinical trials incorporate not 
just structured EHR data, but also clinical notes, imaging, genomic profiles, or wearable data. 
Extending TrialGenie to handle multi-modal inputs would unlock new applications in precision 
medicine and rare disease research. This would require enhancing the reasoning capabilities of 
agents like the Clinician and Statistician to synthesize evidence across modalities. Second, although 
TrialGenie was evaluated on the MIMIC-IV dataset, its broader applicability across other healthcare 
systems remains an open question. Extending TrialGenie to function reliably across diverse 
databases or in federated environments with privacy constraints would enhance its value for 
multicenter trial design. Third, Clinician agent currently relies on RAG over curated literature corpora. 
Future iterations could enrich this by integrating biomedical knowledge graphs (e.g., iBKH67) to 
support relational reasoning over structured knowledge. This would enhance the agent's ability to 
infer indirect associations (e.g., comorbidities, mechanistic pathways), improve covariate selection, 
and provide more context-aware recommendations. 
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Supplemental Materials 
 
Supplementary Table 1.  Overall prompt designs used by Trialist. The prompt is mainly adapted from 
Criteria2Query3.023 with our modifications highlighted in red. 
Task Prompt 

Concept extraction 
(Original from 
Criteria2Query 3.0) 

Annotate clinical concepts from the given text using the following rules:  
1) Annotate concepts with the domains 'Demographic', 'Condition', 'Device', 
'Procedure', 'Drug', 'Measurement', 'Observation', 'Visit', 'Value', 'Negation_cue', 
'Temporal', and 'Quantity'. If you cannot annotate with the given domains, you can 
name a new one (e.g., Drug_cycle, Visit, Provider, etc.).  
2) Split the concepts as detail as possible. Each concept can be annotated only once 
with a single domain.  
3) Normalize clinical abbreviation and acronyms and attached behind the original 
abbreviation with parenthesis.  
4) Return your response under [Annotation] section.  

Following is not allowed examples:  
1) <Measurement>EGFR <Value>triple postive</Value></Measurement>  

2) <Condition>Hypertension, diabetes, heart failure, and dementia</Condition>  
Below is allowed examples:  

1) <Measurement>EGFR</Measurement> <Value>triple positive</Value>  
2) <Condition>hypertension</Condition>, <Condition>T2DM (Type 2 Diabetes 
Mellitus)</Condition>, <Condition>heart failure</Condition>, and 
<Condition>dementia</Condition>  

3) Patient <Demographic>aged<Demographic> > <Value>65 years old</Value>  
4) <Drug>Metformin</Drug> <Value>500 mg</Value> 
<Temporal>daily</Temporal>  
Following is information for each domain:  
1) Condition is events of a Person suggesting the presence of a disease or medical 
condition stated as a diagnosis, a sign, or a symptom, which is either observed by a 
Provider or reported by the patient.  
2) Drugs include prescription and over-the-counter medicines, vaccines, and large-
molecule biologic therapies. Radiological devices ingested or applied locally do not 
count as Drugs.  
3) Procedure is records of activities or processes ordered by, or carried out by, a 
healthcare provider on the patient with a diagnostic or therapeutic purpose. Lab tests 
are not a procedure, if something is observed with an expected resulting amount and 
unit then it should be a measurement.  
4) Devices include implantable objects (e.g. pacemakers, stents, artificial joints), 
medical equipment and supplies (e.g. bandages, crutches, syringes), other 
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instruments used in medical procedures (e.g. sutures, defibrillators) and material used 
in clinical care (e.g. adhesives, body material, dental material, surgical material).  
5) Measurement contains both orders and results of such Measurements as laboratory 
tests, vital signs, quantitative findings from pathology reports, etc. OBSERVATION 
captures clinical facts about a Person obtained in the context of examination, 
questioning or a procedure. Any data that cannot be represented by any other 
domains, such as social and lifestyle facts, medical history, family history, etc. are 
recorded here.  
6) Observations differ from Measurements in that they do not require a standardized 
test or some other activity to generate clinical fact. Typical observations are medical 
history, family history, the stated need for certain treatment, social circumstances, 
lifestyle choices, healthcare utilization patterns, etc.  
7) Demographic can include factors of patient such as age, gender, race, ethnicity, 
education level, income, occupation, geographic location, marital status, and family 
size. Age term can be demographic but the specific age criteria should be annotated 
as value.  
8) Negation_cue includes all information that negates clinical concepts.  
9) Value is the numeric value or string test result of clinical concepts. Typicall values 
can be the results of Measurements such as Lab test, vital signs, and quantitative 
findings from pathology reports. It can also be the dosage of drugs, the frequency of 
drugs, positive/negative of Gene test or lab test, the duration of drugs or numeric 
criteria of age, weight, height, etc. 

Concept extraction 
(Our modified 
version) 

Annotate clinical concepts from the given text using the following rules:  
1) Annotate concepts with the domains 'Demographic', 'Condition', 'Device', 
'Procedure', 'Drug', 'Measurement', 'Observation', 'Visit', 'Value', 'Negation_cue', 
'Temporal', and 'Quantity'. If you cannot annotate with the given domains, you can 
name a new one (e.g., Drug_cycle, Visit, Provider, etc.).  
2) Split the concepts as detail as possible. Each concept can be annotated only once 
with a single domain.  
3) Normalize clinical abbreviation and acronyms and attached behind the original 
abbreviation with parenthesis.  

4) Return your response under [Annotation] section.  
Following is not allowed examples:  

1) <Measurement>EGFR <Value>triple postive</Value></Measurement>  
2) <Condition>Hypertension, diabetes, heart failure, and dementia</Condition>  
3) <Observation>allergy</Observation> to <Drug>X</Drug>, <Drug>Y</Drug>, or 
<Drug>Z</Drug>  
Below is allowed examples:  

1) <Measurement>EGFR</Measurement> <Value>triple positive</Value>  
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2) <Condition>hypertension</Condition>, <Condition>T2DM (Type 2 Diabetes 
Mellitus)</Condition>, <Condition>heart failure</Condition>, and 
<Condition>dementia</Condition>  

3) Patient <Demographic>aged<Demographic> > <Value>65 years old</Value>  
4) <Drug>Metformin</Drug> <Value>500 mg</Value> 
<Temporal>daily</Temporal>  
5) <Observation>allergy to X</Observation>, <Observation>allergy to 
Y</Observation>, or <Observation>allergy to Z</Observation>   
Following is information for each domain:  
1) Condition is events of a Person suggesting the presence of a disease or medical 
condition stated as a diagnosis, a sign, or a symptom, which is either observed by a 
Provider or reported by the patient.  
2) Drugs include prescription and over-the-counter medicines, vaccines, and large-
molecule biologic therapies. Radiological devices ingested or applied locally do not 
count as Drugs.  
3) Procedure is records of activities or processes ordered by, or carried out by, a 
healthcare provider on the patient with a diagnostic or therapeutic purpose. Lab tests 
are not a procedure, if something is observed with an expected resulting amount and 
unit then it should be a measurement.  
4) Devices include implantable objects (e.g. pacemakers, stents, artificial joints), 
medical equipment and supplies (e.g. bandages, crutches, syringes), other 
instruments used in medical procedures (e.g. sutures, defibrillators) and material used 
in clinical care (e.g. adhesives, body material, dental material, surgical material).  
5) Measurement contains both orders and results of such Measurements as laboratory 
tests, vital signs, quantitative findings from pathology reports, etc. OBSERVATION 
captures clinical facts about a Person obtained in the context of examination, 
questioning or a procedure. Any data that cannot be represented by any other 
domains, such as social and lifestyle facts, medical history, family history, etc. are 
recorded here.  
6) Observations differ from Measurements in that they do not require a standardized 
test or some other activity to generate clinical fact. Typical observations are medical 
history, family history, the stated need for certain treatment, social circumstances, 
lifestyle choices, healthcare utilization patterns, etc.  
7) Demographic can include factors of patient such as age, gender, race, ethnicity, 
education level, income, occupation, geographic location, marital status, and family 
size. Age term can be demographic but the specific age criteria should be annotated 
as value. Demographic term only includes the above factors, the word as 'patients' or 
'patient' should not be annotated.  
8) Some demographic factors are not explicitly included in the text, such as 'patients 
who are at least 18 years old' or 'less than 18 years old'. In such cases, the factor 'age' 
should be additional annotated.  
9) Negation_cue includes all information that negates clinical concepts.  
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10) Value is the numeric value or string test result of clinical concepts. Typicall 
values can be the results of Measurements such as Lab test, vital signs, and 
quantitative findings from pathology reports. It can also be the dosage of drugs, the 
frequency of drugs, positive/negative of Gene test or lab test, the duration of drugs 
or numeric criteria of age, weight, height, etc. The relational operator such as "<", 
">", ">=", "<=" should be recognized as part of the VALUE information. 

 
Supplementary Table 2. Performance comparison on entity parsing on the use case of effect of 
hydrocortisone in septic shock patients 

Use Cases Model Precision (%) Recall (%) F1 (%) 
Effect of Hydrocortisone in 
Septic Shock Patients 

GPT-4o 86.8 95.7 91.1 
Phi 4 76.3 77.9 77.1 
DeepSeek-R1 79.0 77.6 78.3 
Gemma 3 80.7 83.6 82.1 

 
 
Supplementary Table 3. Identified error types and definitions from the generated SQL query.23 

Error type Definition 
Concept missing Concept missing error means a clinical concept is detected at 

the concept extraction stage but not used in query 
formulation. 

Functional misuse 
error 

Functional misuse error means that SQL functions are 
incorrectly used in the query and eventually cause the error. 

Incorrect concept 
mapping 

Incorrect concept mapping means that extracted clinical 
concepts are mapped to the wrong concept IDs. 

Integrity constraint 
violation 

Integrity constraint violation means that the query violates the 
data consistency, such as inserting string value into the 
columns expecting integer concept IDs. 

Logic error Logic error means that Informatician incorrectly defines the 
logic, relation, or temporality of the concepts in the query. 

Schema reference 
error 

Schema reference error means that Informatician incorrectly 
referenced OMOP-CDM tables or columns. 

Syntax error Syntax error is an error that has incorrect SQL, syntax such 
as misspelled words or incorrect use of punctuation in the 
query. 

 
Supplementary Table 4.  The frequency of seven categories of SQL errors across five clinical trials 
for each evaluated LLM. 

Trial ID LLM Concept 
Missing 

Functional 
Misuse 
Error 

Incorrect 
Concept 
Mapping 

Integrity 
Constraint 
Violation 

Logic 
Error 

Schema 
Reference 

Error 
Syntax 
Error 

NCT00475852 

GPT-4o 1 0 1 0 0 0 1 
Phi-4 1 1 6 0 0 0 6 

DeepSeek-R1 3 0 9 0 1 0 7 
Gemma 3 5 1 5 1 1 3 8 

NCT02856698 
 

GPT-4o 0 0 1 0 0 0 0 
Phi-4 0 1 3 0 0 0 2 

DeepSeek-R1 1 1 4 0 0 0 3 
Gemma 3 1 1 2 0 0 0 2 
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NCT03872011 

GPT-4o 0 0 2 0 0 0 3 
Phi-4 1 0 7 0 0 0 7 

DeepSeek-R1 1 0 6 0 0 0 7 
Gemma 3 0 0 8 0 0 0 3 

NCT04134403 

GPT-4o 0 0 0 0 0 0 1 
Phi-4 2 0 2 0 0 0 4 

DeepSeek-R1 3 0 4 0 0 0 4 
Gemma 3 2 0 5 0 0 0 3 

NCT06091982 

GPT-4o 0 0 0 0 0 0 2 
Phi-4 0 0 1 0 1 0 4 

DeepSeek-R1 1 0 2 0 0 0 3 
Gemma 3 2 0 2 0 0 0 3 

 
Supplementary Table 5. Evaluation of Statistician’s ability to obtain accurate EC importances after 
optimization pipeline. 

Number of Rules Mean Absolute Error 

2 0.220465 

4 0.147269 

6 0.210378 

8 0.102421 

10 0.079794 

12 0.059300 

14 0.039253 

16 0.053420 

18 0.053167 

20 0.042415 
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