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Assessing fertilized human embryos is crucial for in vitro fertilization, a task
being revolutionized by artificial intelligence. Existing models used for embryo
quality assessment and ploidy detection could be significantly improved by
effectively utilizing time-lapse imaging to identify critical developmental time
points for maximizing prediction accuracy. Addressing this, we develop and
compare various embryo ploidy status prediction models across distinct
embryo development stages. We present BELA, a state-of-the-art ploidy pre-
diction model that surpasses previous image- and video-based models without
necessitating input from embryologists. BELA uses multitask learning to pre-
dict quality scores that are thereafter used to predict ploidy status. By
achieving an area under the receiver operating characteristic curve of 0.76 for
discriminating between euploidy and aneuploidy embryos on the Weill Cornell
dataset, BELA matches the performance of models trained on embryologists’
manual scores. While not a replacement for preimplantation genetic testing
for aneuploidy, BELA exemplifies how such models can streamline the embryo
evaluation process.

Since the advent of in vitro fertilization (IVF) in 1978, it has served as a
key solution for individuals unable to conceive naturally, accounting
for over 8 million successful births globally'. This procedure involves
transvaginal transfer of laboratory-fertilized oocytes into the uterus. A
critical determinant of IVF success and minimizing the risk of perilous
multiple pregnancies lies in the selection of high-quality, single normal
embryos, primarily influenced by their ploidy status®>.

Ploidy status, the chromosomal constitution of an embryo,
greatly impacts pregnancy outcomes. Euploid embryos, characterized
by normal chromosomal counts, typically lead to successful

pregnancies, while aneuploid embryos—those with chromosomal
aberrations—are associated with miscarriage, failed pregnancies, and
chromosomal disorders like Down syndrome or Turner’s syndrome.
Embryo aneuploidy, which leads to increased miscarriage rates, cor-
relates with advanced maternal age.

Currently, preimplantation genetic testing for aneuploidy (PGT-A)
is used to ascertain embryo ploidy status. This procedure requires a
biopsy of trophectoderm (TE) cells, whole genome amplification of
their DNA, and testing for chromosomal copy number variations.
Despite enhancing the implantation rate by aiding the selection of
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euploid embryos, PGT-A presents several shortcomings®. It is costly,
time-consuming, and invasive, with the potential to compromise
embryo viability. Moreover, the test’s accuracy can be marred by
embryonic mosaicism—the co-existence of aneuploid and euploid cells
within the TE—leading to false results, diminished embryo viability, and
lower implantation rates’.

The advent of computer vision in artificial intelligence, along with
the accumulation of extensive IVF-related datasets—incorporating
images, videos, and clinical outcomes—has spurred the development
of automated embryo assessment methods via time-lapse image ana-
lysis. For instance, Khosravi et al. designed STORK, a model assessing
embryo morphology and effectively predicting embryo quality aligned
with successful birth outcomes®. Analogous algorithms can be repur-
posed for embryo ploidy prediction, based on the premise that
embryo images may exhibit patterns indicative of chromosomal
abnormalities. Chavez-Badiola et al. employed the deep-learning
model ERICA to analyze 1231 embryo images to predict ploidy status,
achieving a 70% accuracy, with an area under the receiver operating
characteristic curve (AUC) of 74%, and a sensitivity and specificity of
54% and 86% respectively. Notably, ERICA predicted a euploid embryo
in the top rank in 79% of cases. Limitations included the model’s
inability to distinguish between single and complex aneuploidies, the
assumption of euploidy confirmation at 3-HCG >20 mUIl/mL on day 7,
and a limited dataset potentially restricting general applicability’.
Similarly, Barnes et al. devised a machine learning algorithm, STORK-A,
to predict embryo ploidy status from a single image at 110 h post
insemination (hpi), using time-lapse sequences®. Silver et al. specu-
lated that the entirety of video sequences could potentially improve
embryo classification accuracy, leading to the development of the
UBar CNN-LSTM model, which attained an AUC of 0.82—though on a
limited dataset’. In another recent study, Lee et al. utilized a two-
stream inflated 3D model on 670 image sequences, achieving an AUC
of 0.74 in differentiating euploid/mosaic and aneuploid embryos'™.

Analyzing entire time-lapse sequences of embryo development
presents a challenge in predicting ploidy status, as not all develop-
mental stages may provide pertinent information. This has led to
previous studies focusing on feature extraction from specific devel-
opmental periods". Campbell et al. proposed the timing and presence
of blastocyst expansion on day 5 as a predictor of ploidy status™.
However, this criterion’s predictive accuracy has exhibited consider-
able variability across clinics, making it less reliable”. Analyzing full
embryo development videos could bypass the need to pinpoint rele-
vant timeframes, but the computational cost of training models on
vast datasets could compromise performance due to noise. Addres-
sing these challenges, we present BELA—a fully automated ploidy
prediction model—that requires only embryo time-lapse sequences
and maternal age as inputs. By removing the need for subjective

Table 1| Characteristics of datasets

Dataset WCM- WCM-Embryo- Spain Florida
Embryoscope scope+

Sample 1998 841 543 869

size

Ploidy SA: 494 SA: 170 ANU: 309  SA: 202

splits CxA: 588 CxA: 261 EUP: 234 CxA: 222
EUP: 916 EUP: 410 EUP: 445

Clinical Maternal age Maternal age Maternal Maternal age

features Blastocyst score  Blastocyst score  age Blastocyst
ICM score ICM score score
TE score TE score ICM score
Expansion score  Expansion score TE score

Expansion

score

The sample size, distribution of data across ploidy classes, and additional clinical features for
each dataset are shown.

manual annotation, BELA not only streamlines the ploidy prediction
process but also fosters broad applicability across different clinical
settings.

Results

Training and validation datasets

In our study, we utilized deep-learning techniques to predict ploidy
status using time-lapse sequences of embryo development and com-
pared various model performances across multiple clinics. Two inter-
nal datasets from Weill Cornell Medicine’s Center for Reproductive
Medicine (WCM) were employed: the first encompassed 1998
Embryoscope® time-lapse sequences, and the second contained
841 sequences from the Embryoscope+®. These sequences typically
constituted 360-420 distinct frames, captured at 0.3-h intervals over
5 days of development. PGT-A results served as the ground truth for
ploidy prediction tasks, with embryos classified as euploid (EUP) or
aneuploid (ANU). Further categorization of ANU embryos identified
single aneuploid (SA)—with one chromosomal abnormality—and
complex aneuploid (CxA)—with multiple chromosomal abnormalities.
Accompanying clinical information included blastocyst scores (BS)—
derived from morphological grades and morphokinetic parameters—
and maternal age at oocyte retrieval. BS encompasses three sub-
components: inner cell mass (ICM), trophectoderm (TE), and expan-
sion score™. This blastocyst score formulation has been shown to be
predictive of implantation success, euploidy, and live birth. For
additional model validation, we utilized an external dataset from IVI
Valencia, Spain. Unlike the WCM datasets, this dataset only contained
EUP/ANU labels without explicit SA/CxA details and BS. A second
external dataset from IVF Florida provided additional detail allowing
discrimination between SA and CxA embryos. Comprehensive
descriptions of these datasets are detailed in Table 1, Supplementary
Table 10, and further expounded in the “Methods” section.

Ploidy prediction model with model-derived blastocyst score
We introduce BELA, the Blastocyst Evaluation Learning Algorithm for
ploidy prediction, a fully automated model detailed in Fig. 1. The
model comprises two steps. First, BELA predicts the blastocyst score
(BS) from processed day-5 time-lapse videos (96-112 hpi), a timeframe
chosen based on our ablation analyses comparing embryonic devel-
opment time points and image versus video inputs (Supplementary
Note 1). The input video undergoes processing and transformation
into feature vectors via a pre-trained spatial feature extraction model
(Fig. 1, steps 1-4). To optimize performance, we used a multitasking
BiLSTM model to concurrently predict ICM, TE, expansion, and blas-
tocyst score. We evaluated the first component of BELA using the
mean absolute error (MAE). In the second step, BELA uses the now
‘model-derived blastocyst score’ (MDBS) to predict the embryo’s
ploidy status, employing a logistic regression that integrates maternal
age as a continuous input feature, as illustrated in Fig. 1. We trained and
evaluated BELA on EUP versus CxA and EUP versus ANU splits. BELA
was trained on data from the WCM-Embryoscope dataset via four-fold
cross-validation. Performance was gauged using accuracy, AUC, pre-
cision, and recall across the datasets from WCM-Embryoscope, WCM-
Embryoscope+, Spain, and Florida. For comparison, we trained two
baseline models using the same cross-validation splits. The first base-
line is a day-5 video model which exclusively uses time-lapse input
from 96 to 112 hpi to directly predict ploidy status using a BiLSTM
architecture. The second baseline is an embryologist-annotated model
that uses only the ground-truth BS to predict ploidy status using
logistic regression.

The first component of BELA predicts the blastocyst score (BS). As
depicted in Supplementary Fig. 1, both the training and test sets from
WCM-Embryoscope show a moderate correlation (Pearson correlation
> 0.7) between the model-derived blastocyst scores (MDBS) and the
embryologist BS. This moderate correlation is also evident in the
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Fig. 1| Overview of BELA development. Features are extracted from time-lapse
image frames as shown in steps 1-4. Time-lapse images are both temporally and
spatially processed to decrease bias. Horizontal and rotational augmentation is
performed on time-lapse sequences. 512-dimensional features are extracted for

each time-lapse image using a pre-trained VGGI16 architecture. These features are
fed into a multitask BiLSTM model which is trained to predict blastocyst score as
well as other embryologist-annotated morphological scores. Predicted blastocyst
scores are inputted into a logistic regression model to perform ploidy prediction.

predicted and actual scores of other embryologist metrics (Supple-
mentary Fig. 2). The mean absolute error (MAE) between the MDBS
and the ground-truth Embryoscope BS scores is 1.855 + 0.03. Supple-
mentary Fig. 15a shows the importance across time points that the
BiLSTM attributes for predicting blastocyst score. Importances were
calculated using SHapley Additive exPlanations (SHAP). The impor-
tance follows a bimodal distribution with increased importance at
around 96 hpi and 112 hpi, with increased importance at 112 hpi. These
importances are consistent with methods embryologists use to
determine blastocyst score. First, embryologists at Weill Cornell gen-
erally use frames post 110 hpi to assign quality scores which resonate
with the heightened importance the BiLSTM model puts at later time
points. Second, embryologists look at the speed of blastulation (the
time it takes to become a full blastocyst), which involves contrasting
earlier and later time points. The bimodal increase in importance
suggests that the BiLSTM model similarly contrasts earlier and later
time points. The second phase of BELA involves ploidy classification.
Using the WCM-Embryoscope test set, BELA, when trained to distin-
guish between EUP and ANU, attained an AUC of 0.66 + 0.008, which
rose to 0.76 + 0.002 upon inclusion of maternal age. In the EUP versus
CxA task, the AUC of the model was 0.708 + 0.004 and increased to

0.826 £ 0.004 with the inclusion of maternal age. Comprehensive
performance metrics of BELA are found in Supplementary Table 1.
BELA’s performance (in orange), compared with a day-5 Video model
and the embryologist-annotated blastocyst score model, is illustrated
in Fig. 2. In all tested scenarios (including or excluding age), test sets,
and prediction tasks (EUP versus ANU and EUP versus CxA), BELA
outperforms the day-5 video model (p<0.05). Without including
maternal age in ploidy prediction, the embryologist-annotated BS
model surpasses BELA (p < 0.05) in all prediction tasks, barring EUP vs
ANU on the WCM-Embryoscope test set (Fig. 2a). However, with
maternal age incorporated, BELA outperforms the embryologist-
annotated blastocyst score model on the WCM-Embryoscope test set
(p <0.05). Still, it underperforms in comparison to the embryologist-
annotated blastocyst score model on the WCM-Embryoscope+ data-
set. Supplementary Fig. 15b shows the feature importance of maternal
age and MDBS for ANU vs EUP prediction. For both covariates, lower
values are correlated with euploid predictions, consistent with
embryologist decision-making.

The performance of the BELA was compared with a day-5 video
model using an external dataset from Spain, consisting of 543 embryos
(Fig. 3, Supplementary Table 1). As the Spanish dataset includes only
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Fig. 2 | Comparison of BELA models with other models. Mean AUC scores and
standard deviation for day-5 video, BELA, and embryologist-annotated BS-trained
models are shown across 4 replicates (four-fold cross-validation) (n =4). Perfor-
mances are shown on both the WCM-Embryoscope and WCM-Embryoscope+ data-
sets for both EUP vs ANU and EUP vs CxA prediction tasks. a Performances of models
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without maternal age. b Performances of models with maternal age. Statistical sig-
nificance was performed using a two-sided t-test, where we compared the perfor-
mance of two different settings at a time. Significance (*) is shown if p-value < 0.05.
Source data are provided as a Source Data file.
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Fig. 3 | Performances of day-5 video model and BELA on the Spain dataset.
Average AUC with standard errors is shown for all EUP vs ANU prediction tasks on
the Spain dataset for both the day-5 video model and BELA across four replicates
(four-fold cross-validation) (n = 4). Blue bars depict model performances of day-5
video models, whereas orange bars depict performances of BELA models. Statis-
tical significance was performed using a two-sided t-test. Significance (*) is shown if
p-value < 0.05. Source data are provided as a Source Data file.

embryos labeled as ANU or EUP, model performance could only be
measured for the task of distinguishing between EUP and ANU. Nota-
bly, BELA significantly outperforms the day-5 video model in both
scenarios—with and without the inclusion of maternal age (p <0.05).
Unlike the embryos from Weill Cornell Medicine (WCM-Embryoscope
and WCM-Embryoscope+ datasets), those from the Spanish dataset
were artificially hatched on day 3, which likely impacted later blas-
tocyst morphology and morphokinetics. These embryos exhibit
bleached zona pellucida and lack the full expansion seen in the
embryos from the training set. To quantitatively verify these differ-
ences, feature encodings were extracted using the pre-trained feature
extractor for each frame (between 96 hpi and 112 hpi) of each embryo.
Averaging these feature encodings across frames yielded a single
feature encoding for each embryo, which was further dimensionally
reduced via PCA. The resulting feature encodings, categorized by
dataset, can be viewed in Supplementary Fig. 3. The feature space
shows a significant overlap between the datasets based in the United
States, while the Spanish data clusters distinctly toward the bottom
right. However, despite these noticeable differences, the performance
of the model (excluding maternal age) remains comparable to that
achieved with the Weill Cornell Medicine datasets. This suggests that
the model might be generally applicable across various clinics, even
those with practices that the training data did not account for. The
models incorporating maternal age showed decreased performance
relative to the Weill Cornell datasets, likely attributable to demo-
graphic differences among patients using IVF between Weill Cornell
and Spain. For example, in Spain, IVF is more affordable and accessible
due to different healthcare insurance policies, whereas in the United
States, the high cost of IVF can limit its accessibility to individuals with
the necessary financial resources™. This likely contributes to the
different maternal age distributions observed within the datasets.
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Fig. 4 | Performances of BELA and traditional machine learning models on the
Florida dataset. Average AUC with standard errors is shown for EUP versus ANU
and EUP versus CxA prediction tasks on the Florida dataset for BELA and logistic
regression models trained only on embryologist-derived BS and/or maternal age
across four replicates (four-fold cross-validation) (n = 4). Statistical significance was
performed using a two-sided ¢-test, and relevant lack of statistical significance are
shown via ‘ns’. Source data are provided as a Source Data file.

The performance of BELA was further assessed using an external
dataset from IVF Florida, comprising 869 embryos. It is important to
note that the performance of BELA, as well as comparison logistic
regression models trained only on maternal age and embryologist-
derived blastocyst score, significantly declined in comparison to the
other test sets. This decrease in performance could be attributed to the
weak correlations between blastocyst score, maternal age, and ploidy
within the Florida dataset (Supplementary Table 8). Maternal age is a
crucial predictor of ploidy in all our models, thus, any decrease in its
correlation to ploidy can significantly impact performance. Moreover,
the embryologist-derived blastocyst scores in the Florida dataset were
predominantly centered around a score of 7, thereby reducing the
granularity that made it a potent predictor of ploidy in other datasets.
This lack of granularity within the Florida dataset might be a result of
different scoring practices, as IVF Florida evaluates blastocysts at 115
and 144 hpi, in contrast with the methods employed at Weill Cornell,
which also utilize earlier time points for determining blastocyst score.
Interestingly, the model-derived blastocyst score (MDBS) from the first
module of BELA shows a stronger correlation (-0.119) with ploidy
status than the embryologist-derived blastocyst score (=0.101). This
finding suggests that BELA can create a score mapping that aligns
better with ploidy status compared to the original embryologist-
derived blastocyst scores. In order to further validate this hypothesis,
an embryologist at Weill Cornell re-graded the 50 embryos within the
Florida dataset where the MDBS deviated most significantly from the
provided Florida blastocyst scores. The scoring method at Weill Cor-
nell allows for greater granularity in assessing embryo quality. We
observed a decrease in mean absolute error (MAE) between the MDBS
versus the re-graded blastocyst score from Weill Cornell (4.16) and the
MDBS versus the original Florida blastocyst score (5.02). This suggests
a higher agreement between the MDBS and the Weill Cornell scoring
method. This improved mapping could explain why BELA, with
maternal age included, significantly outperforms the model trained on

maternal age and embryologist-derived blastocyst score for the EUP vs
ANU task (p < 0.05) (Fig. 4).

In order to make the model available for clinical use, a web-based
application named STORK-V for BELA was developed (Fig. 5, Supple-
mentary Fig. 4). This platform is designed to be user-friendly and
capable of predicting an embryo’s ploidy status. The required input for
the prediction includes time-lapse images captured between 96 and
112 hpi, and the maternal age. Two separate logistic regression models
(the second component of BELA) are incorporated to make predic-
tions, one trained to discriminate between euploid (EUP) and aneu-
ploid (ANU) embryos and another trained to distinguish between
euploid and complex aneuploid (CxA) embryos. The output from
these models includes probabilities for euploidy, aneuploidy, and
complex aneuploidy. We also present the intermediary quality scores
from the first component of BELA that can be leveraged for further
analysis of the embryo. The STORK-V platform serves as a valuable tool
for embryologists and in vitro fertilization (IVF) clinics. It offers a
convenient and efficient way to assess an embryo’s ploidy status, which
is a crucial factor in the successful outcomes of assisted reproductive
treatments. This will help medical professionals make more informed
decisions regarding embryo selection and ultimately improve IVF
success rates.

Discussion

In this study, we introduced BELA, which surpasses the traditional IVF
embryo classification methods that usually rely on training data from
later stages of embryo development and focus only on either image or
video data. Compared to previous ploidy prediction and quality esti-
mation models like STORK and STORK-A, BELA utilizes a video
sequence rather than a single static image, allowing it to capture both
temporal and spatial information. We tested BELA on new additional
datasets from both Weill Cornell and external clinics. BELA provides
performance gains in both ploidy prediction and quality scoring across
multiple additional datasets in Weill Cornell, Spain, and Florida. BELA
stands out as a fully automated model that predicts blastocyst scores
and utilizes these predictions as a proxy for ploidy classification.
BELA’s performance is competitive with a model trained on
embryologist-annotated blastocyst scores and it significantly sur-
passes models trained exclusively on time-lapse imaging sequences
without a proxy score. Remarkably, BELA only needs time-lapse images
from 96 to 112 hpi and maternal age to predict an embryo’s ploidy
status, thereby making it effortlessly adaptable to clinical workflows
without causing any disruption. Notably, BELA also offers a degree of
explainability; embryologists can use the model-derived blastocyst
score (MDBS) and other scores predicted via multitasking to com-
prehend the rationale behind a specific ploidy status classification. In
terms of recall, BELA demonstrates a substantial potential for suc-
cessfully selecting euploid embryos, especially for the WCM-Embryo-
scope+ dataset (Supplementary Table 1). While the model's
performance decreases in test datasets outside Weill Cornell, BELA still
outperforms models trained on maternal age and/or embryologist-
derived blastocyst score. BELA also interestingly found that single
aneuploid embryos were evenly predicted as either euploid (EUP) or
complex aneuploid (CxA) by our EUP versus CxA BELA model, sug-
gesting that single aneuploid embryos often resemble euploid or
complex aneuploid embryos, thus making their identification more
challenging. These results are further confirmed by BELA models
specifically trained to discriminate between euploid and single aneu-
ploid embryos (Supplementary Note 2). Supplementary Table 2 shows
BELA’s AUC performance across various age groups classified by the
Society for Assisted Reproductive Technology (SART). Despite
maternal age being a strong predictor, performances across SART age
groups tend to be bimodal (performing best at lower and higher age
groups) for the WCM-Embryoscope and WCM-Embryoscope+ data-
sets. Moreover, in the Spain and Florida datasets, performances across
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comprehensive assessment of the embryo.

maternal age do not follow the same distributions that were present in
WCM datasets suggesting that these clinics’ varying demographics
may affect model performance. In conclusion, while BELA is not
intended to replace PGT-A, it can provide valuable supplementary
information to support decision-making by embryologists, potentially
leading to improved success rates in IVF procedures.

The study has several limitations. First, video classification mod-
els, such as the one used in this study, demand substantial amounts of
training data. Only ~2000 time-lapse sequences of embryo develop-
ment were available for training, which restricted the ability to
experiment with more computationally intensive video classification
architectures like the 3D ConvNets or two-stream inflated convolu-
tional nets. Second, despite trying multiple architectures for the fea-
ture extractor model, none performed as effectively as the ImageNet
pre-trained VGG16 architecture. There could potentially be more sui-
table feature extractors we did not consider, which might yield infor-
mation from earlier stages of embryo development. Third, we did not
have access to several relevant maternal features, such as hormone
levels at the time of oogenesis, demographics, and other clinically
pertinent data. These could enhance the prediction of embryo ploidy
status. Another limitation was the use of blastocyst scores as inter-
mediary labels in BELA. Despite being well-documented, the blastocyst
score is a manually curated label and can be subject to intra-
observational bias. Nonetheless, we demonstrated that blastocyst
score remains predictive of ploidy, justifying its use as an intermediary
proxy value. The results might also be influenced by differing
inclusion-exclusion criteria between datasets, possibly explaining
some of the differences in model performance among the test data-
sets. After conducting an analysis (Supplementary Note 3), we have
developed the BELA model to not consider mosaic embryos and as
such, mosaic embryos with high implantation potential could be mis-
classified. Our datasets’ size also limited us from exploring classifica-
tions of different types of aneuploidies beyond single and complex
aneuploidy, but investigations show that BELA has the potential to
already differentiate between viable and non-viable single aneu-
ploidies (Supplementary Note 5). As it is, BELA remains a promising
clinical support tool in its ability to discriminate between euploid and
non-euploid embryos. Regarding the ploidy status labels, the use of

different platforms for PGT-A across clinics might impact the model’s
accuracy and generalizability. There is significant variability in PGT-A
results between labs and platforms, with no industry-wide standardi-
zation currently in place”. Factors like methods used for biopsy pre-
paration and the interpretation of results by clinicians could influence
PGT-A results, possibly leading to differing detection rates of single
versus complex aneuploidy'®. However, for the advancement of assis-
tive reproductive technologies in IVF, the benchmark should be has-
tening the time to pregnancy and enhancing live birth outcomes.
Embryo selection remains pivotal to this goal, necessitating the
prioritization of embryos with high implantation potential and the de-
prioritization of those with low potential. While most current embryo
selection methodologies, such as morphological assessments, lack
standardization and are largely subjective, PGT-A offers a consistent
approach. This consistency is imperative for developing universally
applicable embryo selection methods. Consequently, we used PGT-A
results as our model’s ground-truth labels. BELA aims to deliver a
standardized, non-invasive, cost-effective, and efficient embryo
selection and prioritization process. Lastly, the study’s model relies
predominantly on data from time-lapse microscopy. Consequently,
clinics lacking access to this technology will be unable to utilize the
developed models.

Contrary to many prior studies that used non-viable embryos as
negatives, leading to higher AUCs, the models developed in this study
only consist of good biopsied embryos, making them more clinically
applicable. The practical implications of these findings could sig-
nificantly impact the efficiency and effectiveness of the embryo
selection process. While the models developed, including BELA, do not
replace PGT-A, they can help embryologists reduce the time and effort
required to assess embryos. This streamlining of the workflow could
allow faster decision-making, letting clinicians concentrate more on
patient care and management. Using BELA could also decrease costs
for patients and minimize risks associated with the biopsy process.
Predictions from BELA can be used to begin ranking embryos from one
patient for further downstream analysis. This is especially crucial for
patients with a limited number of embryos, as it helps maximize the
odds of success while minimizing potential risks and financial costs.
Automated blastocyst score prediction (MDBS) is also clinically
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relevant to embryologists currently manually annotating embryo
scores. In situations where BELA is not used end to end to predict
embryo ploidy, it could supplement manual embryo quality scoring.
Additionally, BELA is a proof of concept in standardizing blastocyst
scoring across clinics by providing an objective score free from
embryologist subjectivity. Future iterations of models like BELA, which
require no manually curated features and are fully automated from
end to end, could be adopted into clinical practice.

Methods

Characteristics of datasets

The study was performed in accordance with relevant guidelines and
regulations. The study was approved by the Institutional Review Board
at Weill Cornell Medicine (numbers 1401014735 and 19-06020306)
and by the IVI Valencia Institutional Review Board (number 1709-VLC-
094-MM). IRB determined that this research meets the exemption
requirements at HHS 45 CFR 46.104(d) and is secondary research for
which consent is not required. A waiver of informed consent was
granted from the IRB as the images were de-identified for this retro-
spective review of clinical data. The embryo imaging was performed as
a part of the standard care procedure during the preimplantation and
IVF cycle. No discarded embryos were used. In this study, information,
which may include information about biospecimens, is recorded by the
investigator in such a manner that the identity of the human subjects
cannot readily be ascertained directly or through identifiers linked to
the subjects. Moreover, the investigators do not contact the subjects,
and the investigator will not re-identify the subjects. As such, informed
consent was not obtained and participants did not receive compensa-
tion for the study. The research utilized multiple datasets for training
and validation of the machine learning models. The first dataset, known
as the WCM-Embryoscope data, was collected from the Center for
Reproductive Medicine at Weill Cornell Medicine between 2018 and
2019. It comprises time-lapse images and PGT-A results for 1998
embryos, including 494 single aneuploid (SA), 588 complex aneuploid
(CxA), and 916 euploid (EUP) embryos. A total of 498 patients were
included in the WCM-Embryoscope data, with an average of four
biopsied embryos each. We treated each sample independently, irre-
spective of parental origin. Accompanying the time-lapse sequences
were clinical data such as embryologist-derived blastocyst score (BS),
morphokinetic parameters, and maternal age at the time of oocyte
retrieval. The blastocyst score is the sum of a set of scores converted
from the expansion, inner cell mass (ICM), trophectoderm (TE) grades,
and day of blastocyst formation'. The blastocyst score ranges from 3 to
14, with a lower number indicating a higher-quality embryo. The images
were captured using the Embryoscope® imaging instrument. To vali-
date the models’ generalizability, we used a second dataset, referred to
as the WCM-Embryoscope+ data, which was also collected from the
Center for Reproductive Medicine. However, these were gathered
between 2019 and 2020 and included a total of 841 embryos (170 SA,
261 CxA, and 410 EUP), using a newer Embryoscope+® instrument.
Similar to the first dataset, this also contained BS, morphokinetic
parameters, and maternal age for each embryo. Furthermore, two
external datasets were employed for further validation. The first,
referred to as the Spain dataset, came from IVI Valencia and contained
543 embryos (309 ANU and 234 EUP) with time-lapse sequences,
morphokinetic parameters, and maternal age. These images were also
captured using the Embryoscope instrument. The second external
dataset, referred to as the Florida dataset, was collected from IVF
Florida and included 869 embryos (202 SA, 222 CxA, and 445 EUP) with
maternal age and blastocyst score for each embryo. These images were
captured using the Embryoscope+® instrument.

Preimplantation genetic testing
Embryos from Weill Cornell were biopsied on day 5 or day 6,
depending on when they reached the blastocyst stage. Biopsied cells

were analyzed using next-generation sequencing (NGS) technology at
the Ronald O. Perelman and Claudia Cohen Center for Reproductive
Medicine (CRM). CRM uses VeriSeq technology from Illumina. The
VeriSeq kit utilizes targeted DNA sequencing to detect chromosomal
anomalies in embryo biopsies. Samples prepared with the VeriSeq PGS
kit are sequences with the standard Illumina MiSeq system. Details
about the VeriSeq kit and MiSeq system can be found on the Illumia
platform'®?, Analyses for the Spain Dataset were done by Igenomix
Spain. Embryos were subjected to assisted hatching on day 3, after cell
counting, with the Hamilton-Thorne LykosVR laser. After reaching the
blastocyst stage, 5-6 trophectodermal cells were biopsied and their
ploidy was assessed by Thermo Fisher Scientific’s NGS technology.
Embryos from IVF Florida were also analyzed by Igenomix using
Thermo Fisher Scientific’s NGS technology. More details about PGT-A
protocols can be found in Garcia-Pascual et al.”.

Temporal and spatial processing

Extracted time-lapse image sequences were highly variable in length,
frame rate, start and end points. These variabilities resulted in
numerous embryos missing information from particular time periods,
and alack of proper annotation could lead to bias in model training. To
mitigate these biases, the following protocol was developed to clean
and standardize all time-lapse sequences, as shown below.

1. Standardized time points are designated at 30-min intervals from
0 to 150 hpi (i.e., 0 hpi, 0.5 hpi, ... 149.5 hpi, 150.0 hpi).

2. For each embryo, time-lapse images taken closest to standardized
time points are assigned to each standpoint. If there is no image
close enough (within 2 h) to the standardized time point, a blank
frame is assigned to the standardized time point. We chose a 2-h
boundary as the ‘close enough’ range for several reasons. First,
our observations indicated that significant changes in the
embryos typically occurred at intervals greater than 2h. As a
result, a 2-h window provided a balance between accurately
capturing significant changes while also allowing for reasonable
data standardization. This timeframe was also influenced by the
overall rate of data acquisition, which sometimes varied but was
generally frequent enough to capture changes within this 2-h
window. However, we recognize the potential for variability, and
further studies may explore the impact of different time
boundaries. We also note that the rest of our analysis can be
replicated with a different time window and, hence, can be
modified on a case-by-case basis. At this point, each standardized
time-lapse sequence has 301 frames, with each frame correspond-
ing to a standardized test point between 0 and 150 hpi.

3. After the construction of standardized time-lapse sequences,
frames can be extracted for video classification model develop-
ment using three parameters: start hour, end hour, and interval.
For example, a model trained on day 2 embryo development
would use these parameters: start hour = 24.0 hpi, end hour =48.0
hpi, and interval = 2 h. This results in 13 frames.

4. For image classification tasks, a time point of focus can be
ascertained, and the frame assigned to that time point can be
extracted.

We standardized the lengths, start, and end points of all time-
lapse videos using set time points and intervals. Adjacent frames were
utilized to impute missing time points. Some sequences, rendered
unusable for certain prediction tasks post-standardization, were
excluded from the analysis based on exclusion criteria. These criteria
encompass instances where the embryo was absent from the petri
dish, the embryo was less than half-visible, or the image was too dim to
discern the embryo. We resized each frame from 800 x 800 to 224 x
224. To curtail background bias during model training, we imple-
mented a circle Hough Transform for embryo segmentation in
each video frame. This processing was uniformly applied across
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WCM-Embryoscope, WCM-Embryoscope+, Spain, and Florida data-
sets. To bolster the diversity and robustness of our training data, we
incorporated video augmentation techniques, including random hor-
izontal flipping and rotations. The former yielded mirror images of
original frames, effectively doubling our data and fostering diverse
pattern learning. Random rotations enhanced the model’s adaptability
to varied embryo orientations, thereby simulating real-world scenar-
ios. We opted for these techniques as they accurately represent
potential real-world variations, fortifying our model’s robustness.

General study architecture

Two different prediction tasks were modeled between euploid (EUP),
aneuploid (ANU), and complex aneuploid (CxA): EUP versus ANU and
EUP versus CxA. Spatial features for each frame were extracted from
the cleaned time-lapse images of the embryos using an ImageNet pre-
trained VGG16 convolutional neural network (CNN). Time-lapse image
frames from 96 hpi to 112 hpi (day 5) were processed according to the
“Temporal and spatial processing” section. The features extracted
from these frames were input to a multitask BiLSTM regression model
(video regression task), which was primarily trained to predict
embryologist-derived blastocyst scores. We investigated various
dataset combinations for training the BELA models (Supplementary
Note 4), ultimately using only WCM-Embryoscope data for the final
models. To prevent data leakage, the WCM-Embryoscope dataset was
split 70/30 for training/testing. This process exclusively utilized
embryos that passed our exclusion criteria, reducing the dataset from
1998 to 1684 embryos. The BiLSTM regression model was trained only
using the training slice of the dataset. Four-fold cross-validation was
employed when training the BiLSTM regression models, setting aside
data for monitoring validation loss. The predicted blastocyst scores for
the training split embryos from the BiLSTM regression model, along
with maternal age, were used to train a logistic regression model to
predict embryo ploidy. A logistic regression model was trained on each
of the cross-validated BiLSTM regression models, and the performance
metrics of each logistic regression model were averaged. Model per-
formance was measured using accuracy, area-under-receiver-operator-
curve (AUC), precision, and recall.

Feature extraction

To extract spatial features from each frame of time-lapse images, an
ImageNet pre-trained model from Tensorflow 2.7 was utilized. After
experimenting with various pre-trained feature weights and extrac-
tors, we utilized a VGG16 CNN architecture to extract spatial features
from images. The VGG16 architecture performs significantly better
than ResNet50 and DenseNet201 (p < 0.05) (Supplementary Fig. 14).
While not significantly better performing than the InceptionV3 archi-
tecture, a speed increase was observed with the VGG16 architecture,
which further warranted its use. VGG16 architectures have been used
successfully as feature extractors for other tasks pertaining to time-
lapse images in IVF?**, Furthermore, a survey of developments in
medical image deep-learning revealed that VGG16 was among the
three predominantly utilized CNN architectures, attributed to its fewer
hidden layers and reduced propensity for overfitting on smaller
datasets™. The final layer of the pre-trained architecture performed
average pooling, which resulted in 512-dimensional feature vectors for
each frame of each embryo.

BELA prediction models

A BiLSTM network was employed for blastocyst score regression,
leveraging its capabilities in sequential data pattern recognition, thus
processing temporal information from time-lapse images®. BiLSTM
architectures have been employed in video classification and regres-
sion tasks across healthcare and broader domains”-*, Given that time-
lapse images represent sequences of frames in which data order is
pivotal, the bidirectional attributes of the architecture become

essential for discerning events with distinct phases. Merging feature
extraction processes, which identify spatial patterns in time-lapse
images, with a BiLSTM architecture adept at interpreting temporal
context, facilitates optimal utilization of the time-lapse data. Our
architecture comprises a bidirectional LSTM layer and three dense
layers. The BiLSTM received 512-dimensional feature vectors extracted
per frame for each embryo. While attention mechanisms and multiple
bidirectional LSTM layers were explored, they failed to enhance per-
formance significantly (p>0.05) across all tasks. We modified the
BiLSTM architecture to perform multitasking, wherein, in addition to
the blastocyst score, the model was trained to predict the expansion
score, ICM score, and TE score. Multitasking has been used in previous
studies to increase performance in scenarios where predicting differ-
ent scenarios together may be advantageous to individual task per-
formance. Similar tasks may have overlap in model weights required to
come to accurate predictions, hence providing additional information
for performing each task®°. Because expansion, ICM, and TE scores
make up the overall blastocyst score, we believe that multitasking can
be used to improve blastocyst score prediction. The BiLSTM archi-
tecture consists of one bidirectional LSTM layer followed by two multi-
unit dense layers. For each prediction task, a 1-unit dense layer is added
to the model. Since all tasks of the multitask model are regression-
based, we used logcosh as the loss function and Adam as the optimizer.
Loss weights for each prediction task within the multitask environment
were equal. Maternal age was included as a feature in the BiLSTM
regression model to predict blastocyst score. Early-stopping with
patience = 5 was used to ensure that the model was not overfitting to
the training data by monitoring the validation loss on the cross-fold
validation data. The performance of the first component of BELA was
evaluated using the mean absolute error (MAE) of the predicted blas-
tocyst score (MDBS). Multitask BELA demonstrated a lower MAE
(1.855 + 0.03) compared with a non-multitask BELA (1.877 + 0.027) on
the WCM-Embryoscope test, supporting the use of multitasking. The
second part of BELA, the logistic regression model, was fed the pre-
dicted blastocyst score, sometimes in combination with maternal age,
and performed a binary classification task. The logistic regression
model used cross-entropy loss.

Computational resources and time requirements

Model training and inference were conducted using an Apple M1
Mac with TensorFlow Metal. Logistic regression models demon-
strated an average training time of 2.5+1.2s, whereas BiLSTM
models required 30.3 +11 min. The BELA model on the STORK-V
platform was trained on a high-performance BioHPC computing
cluster at Cornell, Ithaca, utilizing an NVIDIA A40 GPU and achiev-
ing a training time of 5.23 min. Inference for a single embryo on the
STORK-V platform took 30+5s. The efficient use of consumer-
grade hardware highlights the practicality of our models for assis-
ted reproductive technology applications.

Statistics and reproducibility

Where relevant, we used the Student’s t-test to compare the means
between two groups. This statistical test was selected because it is well-
suited for comparing the means of two samples when the data is
approximately normally distributed and the variances of the two
groups are similar, as is the case with our data. In addition, all
experiments were adjusted for multiple testing using Bonferroni cor-
rection to control for the increased chances of observing a statistically
significant result, where appropriate. Sample sizes for datasets were
determined based on the maximum usable subset available after all
exclusion criteria were applied to embryos. These exclusion criteria
included embryos with a mosaic PGT-A status, and embryos with
missing information such as blastocyst score, ploidy status, and
maternal age. Randomization was introduced into experimentation
through four-fold cross-validation in all relevant comparisons. The
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investigators were not blinded to allocation during experiments and
outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The embryo-imaging datasets are available under restricted access
owing to reasonable privacy and security concerns. Interested
researchers and institutions can fill out this form (https://forms.gle/
VwLP5zu35ZWP6UKS8) to request controlled access to the de-
identified training imaging and meta-data (which includes maternal
age and ploidy status labels). N.Z. (nizanin@med.cornell.edu) and team
will respond and review requests within a week of form submission.
The training dataset was curated by Weill Cornell Medicine’s Center of
Reproductive Medicine (CRM) and this data access form will be
reviewed by CRM and WCM. We emphasize that our proposed models
are not specific to the datasets used in this study. Researchers have the
flexibility to train and test our deep-learning model on relevant imaging
data from their own sources or use our pre-trained models for
research-only purposes. To this end, we have made our deep-learning
model, BELA, available through a web-based user interface (https://
stork-v.eipm-research.org/). Access to this password-protected site is
granted for research purposes only and can be obtained by contacting
the corresponding author. Source data are provided with this paper.

Code availability

Codes used to train and evaluate the models can be found at https://
github.com/ih-lab/stork-v. We have provided documentation for the
code in the repository. If the code is used, please cite it with reference
number.
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