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A foundationalmodel for in vitro fertilization
trained on 18 million time-lapse images

Suraj Rajendran 1,2,3, Eeshaan Rehani 1,2,4, William Phu1,2, Qiansheng Zhan 5,
Jonas E. Malmsten 5, Marcos Meseguer6,7, Kathleen A. Miller 8,
Zev Rosenwaks5, Olivier Elemento 1,2, Nikica Zaninovic5 &
Iman Hajirasouliha 1,2

Embryo assessment in in vitro fertilization (IVF) involves multiple tasks—
including ploidy prediction, quality scoring, component segmentation,
embryo identification, and timing of developmental milestones. Existing
methods address these tasks individually, leading to inefficiencies due to high
costs and lack of standardization. Here, we introduce FEMI (Foundational IVF
Model for Imaging), a foundation model trained on approximately 18 million
time-lapse embryo images. We evaluate FEMI on ploidy prediction, blastocyst
quality scoring, embryo component segmentation, embryo witnessing, blas-
tulation time prediction, and stage prediction. FEMI attains area under the
receiver operating characteristic (AUROC) > 0.75 for ploidy prediction using
only image data—significantly outpacing benchmark models. It has higher
accuracy than both traditional and deep-learning approaches for overall
blastocyst quality and its subcomponents. Moreover, FEMI has strong per-
formance in embryo witnessing, blastulation-time, and stage prediction. Our
results demonstrate that FEMI can leverage large-scale, unlabelled data to
improve predictive accuracy in several embryology-related tasks in IVF.

The success of in vitro fertilization (IVF) hinges on the accurate
assessment and selection of viable embryos1,2. However, current
diagnostic tools and practices encounter several challenges, includ-
ing high costs, lack of standardization, and varying regulations con-
cerning preimplantation genetic testing for aneuploidy (PGT-A)
across different countries. Standardization in embryo assessment
involves establishing consistent and uniform protocols for evaluat-
ing embryo quality and viability across diverse clinical settings. Pre-
sently, variations in diagnostic tools, scoring systems, and
embryologist interpretations lead to inconsistencies in embryo
selection, which can adversely affect IVF success rates and patient
outcomes. These limitations highlight the urgent need for a more

efficient, non-invasive, and affordable approach to embryo assess-
ment. Such advancements could significantly enhance IVF success
rates and accessibility, reduce the emotional and financial strain on
patients, and minimize risks associated with IVF, such as multiple
pregnancies and their complications3,4. Therefore, developing solu-
tions that address these challenges is essential for advancing repro-
ductive health outcomes.

Recent advancements in artificial intelligence (AI) have aided in
multiple IVF tasks, including predicting the morphology and ploidy
status of embryos, critical factors for a successful procedure. Models
like STORK and ERICA use deep learning to analyze embryo mor-
phology from images to do specific downstream tasks5–7. While these

Received: 20 November 2024

Accepted: 13 June 2025

Check for updates

1Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine of Cornell University, New York, NY, USA. 2Caryl
and Israel Englander Institute for Precision Medicine, The Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA. 3Tri-Institutional Computational
Biology &Medicine Program,Weill Cornell Medicine, New York, NY, USA. 4Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA. 5The
Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, USA. 6IVIRMA Global Research Alliance,
IVIRMAValencia, Plaza de la Policía Local 3, 46015 Valencia, Spain. 7IVIRMAGlobal ResearchAlliance, IVI Foundation, Institutode InvestigaciónSanitaria La Fe
(IIS La Fe), Valencia, Spain. 8IVF Florida Reproductive Associates, Fort Lauderdale, Florida, USA. e-mail: imh2003@med.cornell.edu

Nature Communications |         (2025) 16:6235 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-8149-0157
http://orcid.org/0000-0002-8149-0157
http://orcid.org/0000-0002-8149-0157
http://orcid.org/0000-0002-8149-0157
http://orcid.org/0000-0002-8149-0157
http://orcid.org/0000-0003-4225-3121
http://orcid.org/0000-0003-4225-3121
http://orcid.org/0000-0003-4225-3121
http://orcid.org/0000-0003-4225-3121
http://orcid.org/0000-0003-4225-3121
http://orcid.org/0000-0001-7130-7606
http://orcid.org/0000-0001-7130-7606
http://orcid.org/0000-0001-7130-7606
http://orcid.org/0000-0001-7130-7606
http://orcid.org/0000-0001-7130-7606
http://orcid.org/0000-0001-6740-6548
http://orcid.org/0000-0001-6740-6548
http://orcid.org/0000-0001-6740-6548
http://orcid.org/0000-0001-6740-6548
http://orcid.org/0000-0001-6740-6548
http://orcid.org/0000-0003-0352-470X
http://orcid.org/0000-0003-0352-470X
http://orcid.org/0000-0003-0352-470X
http://orcid.org/0000-0003-0352-470X
http://orcid.org/0000-0003-0352-470X
http://orcid.org/0000-0002-8061-9617
http://orcid.org/0000-0002-8061-9617
http://orcid.org/0000-0002-8061-9617
http://orcid.org/0000-0002-8061-9617
http://orcid.org/0000-0002-8061-9617
http://orcid.org/0000-0002-0600-3371
http://orcid.org/0000-0002-0600-3371
http://orcid.org/0000-0002-0600-3371
http://orcid.org/0000-0002-0600-3371
http://orcid.org/0000-0002-0600-3371
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61116-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61116-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61116-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-61116-2&domain=pdf
mailto:imh2003@med.cornell.edu
www.nature.com/naturecommunications


models show promise, they are often limited by their focus on specific
developmental stages and reliance on both image-based data and
embryologist input. These limitations introduce bias as well as a less
seamless process for integrating AI into clinics. Addressing these gaps,
BELA (Blastocyst Evaluation Learning Algorithm) was developed,
which predicts ploidy status through using a multitask learning
approach on sequences of time-lapse images, without any embryolo-
gist input. This approach not only predicts quality scores but also uses
these scores to determine ploidy status, enabling a more compre-
hensive and objective analysis of embryo development. BELA has
demonstrated superior performance with an AUC of 0.76, surpassing
models that rely on manual embryologist scoring. However, BELA
faces challenges, notably in ensuring accuracy dependent on the
quality and diversity of training data. Moreover, BELA is still limited to
only predicting embryo quality scores and ploidy status8.

Foundation models in computer vision are large-scale models
pre-trained on extensive datasets, enabling them to generalize across
various tasks. These models, typically deep neural networks, learn a
broad range of features during pre-training, which can be fine-tuned
for specific applications9. The self-supervised learning paradigm is
central to their effectiveness, allowing the models to leverage vast
amounts of unlabeled data by creating pretext tasks, such as image
inpainting or contrastive learning. Vision Transformers (ViTs), a
prominent foundation model architecture, utilize a transformer-
based approach instead of traditional convolutional neural networks
(CNNs)10. ViTs split images into patches, linearly embed these

patches, and process the sequence using transformer layers. This
method allows ViTs to capture long-range dependencies and com-
plex patterns within images. The key advantage of ViTs lies in their
ability to handle large-scale data and perform well on diverse vision
tasks after fine-tuning. The promise of foundation models in com-
puter vision includes improved performance on various tasks,
reduced need for labeled data, and enhanced adaptability to new
domains. Thesemodels have demonstrated state-of-the-art results in
image classification, object detection, and segmentation, making
them invaluable tools in fields requiring robust and scalable image
analysis solutions. In the field of IVF, Wang et al. developed IVFormer
as a backbone for various IVF-related tasks; however, its utility is
constrainedby limited training dataset diversity, and the absence of a
publicly available model11.

In this study, we utilized the Vision Transformer masked auto-
encoder (ViT MAE), which uses self-supervised learning (SSL) to
reconstruct the original image from a masked input12. The ViT MAE
uses an encoder-decoder structure to learn important features about
the dataset, which allows the model to perform better reconstruc-
tion. By learning domain-specific information through self-super-
vision, the ViT MAE can then be used for downstream tasks in a
supervisedmanner. ViTMAEs have been applied to a range of tasks in
previous literature, demonstrating its versatility and effectiveness.
Zhou et al. developed RETFound, built on a ViT MAE architecture,
which was employed for various retinal disease-related tasks13. Liu
et al. explored the use of ViT MAE for general domain medical tasks
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Fig. 1 | Overview of FEMI and downstream applications. 1 Input images are
preprocessedby segmenting and resizing the embryo. Thepanel shows anexample
of a hard embryo time-lapse image. 2 The segmented images are used to train the

masked autoencoder. 3 The encoder from the autoencoder is fine-tuned for clini-
cally relevant tasks.
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by training it on 2.5million unlabeled images fromvariousmodalities
(CT, MR, PET, X-rays, and ultrasound)14. Their findings highlighted
the model’s capacity to achieve high performance compared to
benchmarks.

In this paper, we present FEMI (Foundational IVF Model for Ima-
ging), a foundation model trained on ~18 million time-lapse embryo
images.

Results
FEMI Pre-training
FEMI is trained using a ViT MAE backbone architecture as shown in
Fig. 1. To train and test FEMI, we compiled a diverse dataset of
17,968,959 time-lapse images sourced from multiple clinics. These
included 1998 time-lapse sequences from Weill Cornell Medicine
(WCM) captured using the Embryoscope (ES), 841 sequences from
WCM (2020) using the Embryoscope+ (ES + ), 543 sequences from IVI
RMA Valencia captured with the Embryoscope + , 869 sequences
from IVF Florida using the Embryoscope + , and 4860 sequences
from WCM post-2021 using the Embryoscope + . More information
about these datasets is shown in Supplemental Table 1. Additionally,
two public datasets were incorporated: 704 time-lapse sequences
from the University Hospital of Nantes and 2344 blastocyst images
from clinics across Europe15,16. For FEMI’s training dataset, we selec-
ted time-lapse images taken after 85 h post-insemination (hpi) at
z-axis depths ranging from −30 to +30. These images predominantly
featured the embryo slide background. To enhance feature learning,
images were tightly cropped around the embryos. This was facili-
tated by an embryo segmentation model we developed based on the
InceptionV3 architecture. The segmentation model was trained on a
dataset that consisted of embryo image-mask pairs where the masks
contained whole embryo segmentation. Details on this model are in
the Methods section. For each image, the segmentation model gen-
erated a mask, within which a circular embryo shape was identified
via contour detection. A bounding box was then drawn around this
detected shape, and the image was cropped and resized to 224 × 224
pixels for SSL input. A ViTMAEmodel pre-trained on the ImageNet-1k
dataset was further pre-trained on our collection of 17,968,959 time-
lapse images for 800 epochs with early stopping, to learn in-domain
imaging features. The time-lapse image dataset was divided into an
80% training and 20% validation split, treating each image as an
independent sample.

This training resulted in the IVF foundation model, FEMI, (Fig. 1)
from which the encoder is subsequently utilized for various down-
stream tasks. Detailed methodologies of this pre-training phase are
provided in the Methods section. We evaluated FEMI on several clini-
cally relevant tasks, including ploidy prediction, blastocyst quality
scoring, embryo component segmentation, embryo witnessing, blas-
tulation time prediction, and stage prediction. Task-specific layers
were appended to the encoder as required. For most tasks, the input
consisted solely of single-embryo time-lapse images. However, for
blastocyst quality scoring and ploidy prediction, the model also pro-
cessed sequences of time-lapse images (video input). Additionally, for
ploidy prediction, maternal age was incorporated as a feature due to
its demonstrated predictive value. A variety ofmodels were trained for
comparison across these downstream tasks, detailed in the Methods
section and in Supplemental Table 2. Benchmark models included
both traditional supervised architectures (VGG16, ResNet-RS, Effi-
cientNet V2, ConvNeXt, CoAtNet,MoViNet) andmodels pre-trained via
self-supervision (ImageNet ViT MAE, Swin Transformer, I-JEPA, MED-
SAM). Each task’s dataset was partitioned into training and held-out
test sets, with the training data further split into training and validation
segments through 4-fold cross-validation. Model performances were
averaged across the held-out test set and any task-specific external
validation datasets, maintaining consistent data splits across all model
architectures.

Downstream tasks
Ploidy prediction. Ploidy status, indicating whether an embryo is
chromosomally normal (euploid) or abnormal (aneuploid), is a critical
factor in selecting embryos for implantation. Aneuploid (ANU)
embryos are further classified into single aneuploid (one chromosomal
aberration) and complex aneuploid (CxA) (multiple chromosomal
aberrations). Ploidy status is a critical factor in embryo selection as it
directly influences the potential for successful implantation and
ongoing pregnancy. Euploid (EUP) embryos, which have the correct
number of chromosomes, exhibit higher implantation rates and lower
risks of miscarriage compared to aneuploid embryos, which contain
chromosomal abnormalities. Accurate prediction of ploidy status
enables the selection of embryos with the highest viability1. Tradi-
tionally, ploidy assessment is performed post-blastocyst development
through a biopsy for PGT-A1–3. Despite its diagnostic value, PGT-A is
costly and considered unethical in some regions due to its invasive
nature. We explore the capability of FEMI in predicting embryo ploidy
using non-invasive methods. First, FEMI’s performance was assessed
on image-based ploidy predictions using single images captured at 110
hpi. We then expanded the approach to include sequences of images
(video input) from 96 to 112 hpi, a period identified by previous
research as important for ploidy determination8. Incorporating
sequences of time-lapse images into ploidy prediction allows FEMI to
capture dynamic developmental processes and morphological chan-
ges over time, which are critical indicators of embryo viability and
chromosomal normality8. Furthermore, we incorporatedmaternal age
intomodels, considering its establishedpredictive relevance for ploidy
status. Advanced maternal age is associated with an increased like-
lihood of chromosomal abnormalities1,8. FEMI was evaluated on two
classification tasks: distinguishing between euploid and aneuploid
embryos, and between euploid and complex aneuploid embryos. The
latter distinction is particularly important as complex aneuploid
embryos are less likely to result in successful implantations compared
to single aneuploid embryos, whichmay still lead to viable pregnancies
despite chromosomal aberrations.

To fine-tune and evaluate our models, we utilized datasets with
ploidy-labeled embryos, including Weill ES, 2020 Weill ES + , Spain
ES + , Florida ES + , and 2021+ Weill ES + . The collective dataset for
euploid vs. aneuploid comprised 6285 embryos. For complex aneu-
ploidy, we removed the Spain ES+ dataset as it did not contain the
information to discriminate between different types of aneuploids.
This resulted in 4436 embryos for euploid vs. complex aneuploid. For
each task, 25% of each dataset was reserved as a held-out test set,
where each embryo was treated as an independent sample. The
remaining data underwent four-fold cross-validation for model train-
ing, and performance metrics were aggregated across all folds. Model
efficacy was primarily assessed using the area-under-the-receiver-
operator-curve (AUROC).

We compared the performanceof FEMI on ploidy prediction tasks
against various benchmark models. In the supervised learning cate-
gory, models such as VGG16, ResNet101-RS, EfficientNet V2, ConvNext,
and CoAtNet were trained on each task. Additionally, for video-based
ploidy prediction, a MoViNet model, pre-trained on ImageNet-1k, was
also employed. FEMI was further benchmarked against three archi-
tectures that underwent self-supervised learning: a ViT MAE model
solely pre-trained on ImageNet-1k, a Swin Transformer, and an Image-
based Joint-Embedding Predictive architecture. The latter two, refer-
red to as IVF SWIN and I-JEPA, respectively, were pre-trained on
ImageNet-1k and further refined through self-supervised learning
using the same 18 million images from the IVF domain that trained
FEMI. For image and image+age inputs, we also compared FEMI’s
performance to a previously published model, STORK-A. STORK-A
utilizes a ResNet18 architecture as its backbone, and we evaluate four
versions of it, image and image+age inputs for both EUP vs. ANU and
EUP vs. CxA classification.
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Figure 2 shows the performance of all models on all ploidy pre-
diction tasks. For image-only euploid vs. aneuploid classification, FEMI
significantly outperforms all comparison models in three datasets,
whereas in the other two datasets, there is a non-significant increase in
performance from FEMI. FEMI can achieve performances of greater
than 0.70 AUROC at certain datasets (2020 Weill ES + − 0.71 ± 0.01,
Spain ES + − 0.75 ±.01), with only image data. With the inclusion of
maternal age, FEMI is significantly better in the 2020Weill ES + , Spain
ES + , and 2021+ Weill ES+ datasets and comparable at Weill ES and

Florida ES + . For video-onlymodels, FEMI outperforms all comparison
models significantly in all datasets. However, with the inclusion of
maternal age, FEMI only has non-significant performance increases
compared to other models across all datasets.

We also explore euploid vs. complex aneuploid tasks, shown in
Fig. 2. In general, model performances across architectures are better
in these tasks compared to euploid vs. aneuploid due to complex
aneuploid embryos being a more extreme case of aneuploidy and
having more distinct morphology than single aneuploid embryos.

Euploid vs. Aneuploid

(a) Image (b) Image + Maternal Age

(d) Video + Maternal Age(c) Video

Euploid vs. Complex Aneuploid

(e) Image (f) Image + Maternal Age

(h) Video + Maternal Age(g) Video

*
*

*

*
*

*

*
* *

*
*

* * *
*

*

*
*

* *
*

Fig. 2 | Ploidy performance across models, inputs, and datasets. Dot plots
represent model performance based on AUROC for ploidy prediction on ES
(Embryoscope) and ES+ (Embryoscope+ ) microscopes. Performances are aggre-
gated across 4 replicates (four-fold cross validation) (n = 4). Euploid vs. aneuploid
classification: a image input; Weill ES, p =0.84; 2020 Weill ES + , p = 2.1e-24; Spain
ES + , p = 2.3e-24; Florida ES + , p =0.69; 2021+Weill ES + , p = 3.2e-21. b image + age
input;Weill ES, p =0.07; 2020Weill ES + , p = 1.7e-16; Spain ES + , p = 2.9e-19; Florida
ES + ,p =0.14; 2021+Weill ES + ,p = 4.5e-14. c video input;Weill ES,p = 2.6e-23; 2020
Weill ES + , p = 6.3e-25; Spain ES + , p = 4.1e-27; Florida ES + , p = 1.7e-19; 2021+ Weill
ES + , p = 1.0e-22 d video + age input; Weill ES, p =0.79; 2020 Weill ES + , p =0.99;
Spain ES + , p =0.99; Florida ES + , p =0.69; 2021+ Weill ES + , p =0.99. For euploid

vs. complex aneuploid classification: e image input;Weill ES,p = 2.7e-20; 2020Weill
ES + , p = 9.2e-25; Florida ES + , p = 4.3e-21; 2021+ Weill ES + , p = 4.8e-26. f image +
age input; Weill ES, p = 8.6e-10; 2020 Weill ES + , p =0.99; Florida ES + , p = 2.0e-11;
2021+ Weill ES + , p = 6.6e-12. g video input; Weill ES, p = 1.7e-17; 2020 Weill ES + ,
p = 3.4e-22; Florida ES + , p =0.99; 2021+Weill ES + , p = 1.2e-22. h video + age input;
Weill ES,p =0.07; 2020Weill ES + , p =0.73; Florida ES + , p =0.58; 2021+Weill ES + ,
p =0.99. Asterisks represent statistical significance with p <0.05, where statistical
significance is determined by performing a one-way ANOVA test followed by a
Tukey HSD test. For all subplots, error bars showmean values +/- SEM. Source data
are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-025-61116-2

Nature Communications |         (2025) 16:6235 4

www.nature.com/naturecommunications


For the image-only setting, FEMI does significantly better than com-
parison models on all datasets. When maternal age is added, FEMI
performs significantly better in the Weill ES, Florida ES + , and 2021+
Weill ES+ datasets. For the video-only setting, we see FEMI significantly
outperforms comparison models in three datasets, Weill ES, 2020
Weill ES + , and 2021+ Weill ES + . Interestingly, we can achieve a
0.80 ±0.01AUROC in the 2021+Weill ES+ dataset, with just video input
andnomaternal age.With the inclusionofmaternal age, FEMI achieves
an AUROC of greater than 0.85 in both theWeill ES and 2020Weill ES+
datasets. We investigated the performance of FEMI across various age
groups defined by the Society for Assisted Reproductive Technology
(SART). Performances for Image, Image+Age, Video, Video+Age mod-
els across all test sets are shown in Supplemental Tables 3 and 4. In
general, FEMI shows consistent performance across age groups both
with and without the inclusion ofmaternal age. FEMI also outperforms
logistic regression models trained only on maternal age, shown in
Supplemental Table 5. We also show FEMI’s area under the precision-
recall curve (AUPRC) for EUP vs. CxA tasks in Supplemental Table 6 as
the task has a slight class imbalance.

We investigated FEMI’s performance in ploidy prediction, parti-
cularly in scenarios involving low-quality embryos. UsingWeill ES, Weill
ES + , and 2021+ Weill ES+ datasets, we analyzed ploidy prediction
across specific blastocyst quality score ranges: high (3-5), medium (6-9),
and low (10-14). For 320 low-quality embryos in EUP vs. ANU image-only
prediction, FEMI achieved an AUC of 0.677 ±0.0346, significantly out-
performing the next best model, ResNet-RS, which had an AUC of
0.602±0.0172 (p <0.01). These results demonstrate FEMI’s superior
accuracy in predicting ploidy under conditions of low embryo quality.

Model interpretation for ploidy prediction. We investigated what
image features FEMI used for performing downstream tasks, specifi-
cally in the case of ploidy prediction. We use Score-CAM on the final
block of FEMI’s encoder to visualize the salient portions of the image

that the model used for classification (Fig. 3)17. We notice that the
model primarily uses boundaries of the cells within the embryos and
portions of the inner cell mass and trophectoderm. These features
correspond with general characteristics that embryologists look at
when determining the quality of an embryo. For ploidy prediction, the
quality of an embryo is a strong indicator of any abnormalities8. For
example, if an embryo has not expanded to the blastocyst state by a
certain time point, it is likely delayed, potentially due to chromosomal
abnormalities.

Embryo quality score prediction. During the process of embryo
development, embryologists assess and grade embryo quality, typi-
cally on Day 5 or Day 6 post-fertilization. These grades serve as indi-
cators of embryo quality, assisting in the ranking and selection of
embryos for transfer. However, grading systems are not standardized
and can vary widely between different clinics and even among
embryologistswithin the sameclinic. Consequently, there is significant
interest in developing an AI model that can be personalized to indivi-
dual scoring systems. In this study, we evaluated the performance of
FEMI using a scoring system outlined by Zhan et al., which is based on
the widely recognized Gardner grading system18,19. The scoring system
by Zhan et al. has been shown to correlate with key clinical outcomes
such as ploidy, implantation, and fetal heart rates, thereby serving as a
robust indicator of embryo quality. This system, employed at Weill
Cornell Medicine (WCM) and subsequently referred to as the WCM
scoring system, comprises several components: an Expansion Score,
an Inner Cell Mass (ICM) Score, and a Trophectoderm (TE) Score, each
ranging from 1 to 4. The overall blastocyst score (BS), which serves as a
comprehensive quality metric, is calculated by summing these scores
and adding a day-specific value (an addend of 0 for Day 5 biopsies and
2 for Day 6 biopsies), resulting in a total score range from 3 to 14. We
trained FEMI to predict eachof these four scores as part of a regression
task to assess how effectively the model can learn and replicate the

Euploid, ES+

Euploid, ES

Complex Aneuploid, ES+

Aneuploid, ES

Fig. 3 | Score-CAM explanations for images for ploidy prediction tasks. Highlighted regions indicate the embryo areas utilized by FEMI for classification predictions.
Four independent representative images are shown.
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WCM scoring system. To train our models, we utilized a subset of the
Weill ES dataset, which includes embryo quality scores for 1798
embryos. We designated 25% of this dataset as an internal test set, and
the remainder was used to train models using 4-fold cross-validation.
Each embryo was treated as an independent sample. Additionally, two
external datasets employing the same scoring system, 2020 Weill ES+
(841 embryos with scores) and 2021+ Weill ES+ (2,668 embryos with
scores), were used to evaluate model performance.

We further assessed FEMI’s performance using the scoring system
employedby IVF Florida, a variant of the Zhan et al. system. The Florida
scoring system omits the use of +/- gradings, leading to a less granular
scoring range compared to the Zhan et al. system (Supplemental
Table 7). For IVF Florida, our models were trained solely to predict the
overall BS, ranging from 3 to 14. For the IVF Florida dataset, which
comprises scores for 869embryos,we similarly allocated 25% as a held-
out test set and used the remainder for training through 4-fold cross-
validation. Model performance was evaluated based on this test set.

In addition to image inputs, we explored the integration of video
inputs for quality prediction tasks, specifically using sequences cap-
tured between 96 - 112 hpi. FEMI’s performance was compared against
several pre-trained architectures, including VGG16, ResNet101-RS,
EfficientNet V2, ConvNext, CoAtNet, and MoViNet for video classifi-
cation. Models were also benchmarked against ImageNet-1k ViT MAE,
IVF SWIN, and I-JEPA. Performance across all tasks wasmeasured using
mean absolute error.

Figure 4 shows the performance of all models on WCM quality
scores. For both image and video inputs, FEMI significantly outper-
forms other models in multiple datasets on overall BS and inner cell
mass score prediction. Supplemental Fig. 1 shows the correlation
betweenblastocyst scores predictedbyFEMI and theground truth. For
the expansion score, FEMI once again significantly outperforms all
other models in both image and video inputs, except within the 2020
Weill ES+ and 2021+ Weill ES+ datasets for the image setting. For the
trophectoderm score, FEMI significantly outperforms all models in
the 2021+Weill ES+ dataset and are comparable in other datasets in the
image setting. In the video setting, FEMI significantly outperforms
other models in the 2020 Weill ES+ and 2021+ Weill ES+ datasets.
Supplemental Figure 2 shows the performance of image and video
models for the Florida scoring system. For both input types, FEMI
significantly outperforms comparison models.

We evaluated FEMI’s performance in quality scoring across low,
medium, and high-quality embryos. While FEMI’s performance on
medium-quality embryos is comparable to that of other models, it
significantly outperforms competitors on both low and high-quality
embryos (p <0.05). Specifically, FEMI achievesmeanabsolute errorsof
2.04 ±0.017 for low-quality embryos and 0.941 ± 0.028 for high-
quality embryos, compared to 2.28 ± 0.033 and 1.17 ± 0.032, respec-
tively, for the next best model, EfficientNet-V2. These results indicate
that FEMI performs better in data regimes with fewer representative
samples.

Embryo component segmentation. Segmentation of various blas-
tocyst components such as the trophectoderm, zona pellucida (ZP),
and inner cell mass is a critical task that facilitates both visualization
and downstream analytical processes. By segmenting these regions of
interest, it allows the further analysis of key morphological compo-
nents that could affect embryo viability. In this study, we explored the
capability of FEMI to perform segmentation on images of blastocysts.
For this purpose, we utilized a publicly available dataset from Simon
Fraser University, which includes 274 embryos20. Segmentations and
masks for a sample image are shown in Supplemental Fig. 3. We
reserved 25% of this dataset as a test set and employed the remaining
data for model training through 4-fold cross-validation. Given the
dataset’s limited size, data augmentation techniques were imple-
mented to enhance the robustness of the training data. FEMI was

adapted for segmentation tasks using the UNETR decoder archi-
tecture, as described by Hatamizadeh et al.21. This adaptation involved
integrating three decoders, each with skip connections, into FEMI’s
encoder. Each decoder was specifically trained to segment one of the
three blastocyst components: TE, ZP, or ICM. We benchmarked FEMI
against several models, including a U-Net with an ImageNet-1k VGG16
encoder, a UNETR utilizing an ImageNet-1k ViT encoder, and Segment
Anything in Medical Images (MedSAM). Detailed descriptions of the
implementations for these benchmark models are provided in the
Methods section of the manuscript. The effectiveness of each model
was assessed using the Dice score, which can evaluate the similarity
between a predicted segmentation mask and the ground truth
segmentation mask.

Figure 5a shows the performances of all models on the segmen-
tation of the three embryo components. While FEMI does not sig-
nificantly outperform comparison models in any of the three
components, we note that FEMI does have a non-significant increase in
Dice score.

Embryo witnessing. The IVF process is susceptible to human errors,
particularly during steps such as embryo biopsy, which can lead to
mismatches when embryos are reintroduced into time-lapse imaging
systems. To mitigate these risks, some clinics implement embryo
witnessing procedures, where an embryologist manually verifies the
identity of an embryo before and after critical steps22. While effective,
this approach is labor-intensive. Previous research has utilized the ViT
MAE architecture for embryo witnessing23. However, these studies
were limited by a smaller dataset (20,000 images) and confined the
identification process to a narrow timeframe (105 hpi - 110 hpi). In this
study, we expand the scope of embryo witnessing by investigating
whether FEMI can distinguish an embryo’s image at 112 hpi from its
image at 96 hpi. This scope allows us to investigate the boundaries of
FEMI’s capacity for witnessing. To train the witnessing model, we
employed the FaceNet framework, using the encoder from FEMI as a
feature extractor. The model was trained on triplets generated
through semi-hardmining, where a typical triplet comprises an anchor
image (e.g., a 96 hpi image of embryo A), a positive image (e.g., a 112
hpi image of embryo A), and a negative image (e.g., a 112 hpi image of
embryo B). For model evaluation, features were extracted from both a
96 hpi and a 112 hpi image using the trained witnessing model. The
embryos are considered to be the same if the Euclidean distance
between their feature embeddings falls below a pre-defined threshold,
established from the validation datasets. An equal number of positive
and negative pairs were created for each test set to ensure balanced
performance metrics.

To train ourmodels for embryowitnessing, we utilized a subset of
the Weill ES dataset consisting of 1998 embryos, reserving 25% as an
internal test set. The remaining data was used formodel training using
4-fold cross-validation. Additionally, four external datasets, which
adhere to the same scoring system, were employed to evaluate model
performance: Spain ES+ (890 embryo pairs), Florida ES+ (1680 embryo
pairs), 2020Weill ES+ (1960 embryo pairs), and 2021+Weill ES+ (6000
embryo pairs). Model performance was assessed using the F1 Score, a
metric that considers both the precision and the recall of the test to
compute the score. A correct classification occurs when the model
accurately identifies a pair of images as depicting the same embryo or
correctly discerns pairs depicting different embryos. For the task of
embryo witnessing, FEMI’s efficacy was benchmarked against several
models pre-trained on ImageNet-1k, including VGG16, ResNet101-RS,
EfficientNet V2, ConvNext, and CoAtNet. We also compared FEMI’s
performance against two additional architectures, ImageNet-1k ViT
MAE and IVF SWIN, to establish its relative proficiency in accurate
embryo identification across various model frameworks.

Figure 5b shows the performance of all models for embryo wit-
nessing. FEMI outperforms all comparisonmodels in all datasets except
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the Weill ES dataset. Previous papers have achieved ~99% accuracy in
witnessing, but thesemodels had very narrow time identification spans
(e.g. 105 - 110 hpi). We show > 90% F1 Score even after expanding the
time scope to 96 - 112 hpi, where the embryo goes through multiple
distinct changes as it develops into a mature blastocyst. We also
explore if the FEMI embryo witnessing model can be used to cluster

time-lapse images by source embryo. Supplemental Fig. 4 plots the first
two principal components of the embeddings generated from ten
randomly selected embryos from 2021+ Weill ES + . Embeddings were
generated from a fully trained FEMI embryo witnessing model. The
results indicate that images can indeed be grouped by source embryo,
which may have downstream benefits beyond witnessing.
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Blastulation time prediction. Predicting the blastulation time (tB), or
the time at which an embryo develops into a blastocyst, is useful for
embryologists both for assessing embryo quality and for planning
subsequent visualization processes. In this study, we exploredwhether
FEMI could accurately predict the hours post-insemination atwhich an
embryo begins to form a blastocyst. This task was formulated as a
regression problem, where the input was an image of the embryo at 72
hpi (end of Day 3, prior to blastocyst stage) and the label was the
difference in hours between tB and 72 hpi. To train our models, we
utilized a portion of theWeill ES dataset, which includes tB annotations
for 1935 embryos. We reserved 25% of this dataset as an internal test
set, and the remaining data was employed for training using 4-fold
cross-validation. Performance was also evaluated using two external
datasets that adhere to the same scoring system: Spain ES+ (531
embryos with tB) and 2020 Weill ES+ (983 embryos with tB). Model
performance was assessed using the mean absolute error. For the
blastulation time prediction task, FEMI’s effectiveness was compared
against several models pre-trained on ImageNet-1k, including VGG16,
ResNet101-RS, EfficientNet V2, ConvNext, and CoAtNet. Additionally,
FEMI was benchmarked against the ImageNet-1k ViT MAE, IVF SWIN,
and I-JEPA, to evaluate its predictive capabilities relative to other
leading model architectures in accurately determining blastula-
tion time.

Figure 5c shows the performance of all models for blastulation
time prediction. FEMI significantly outperforms other models in the
Spain ES+ and 2020 Weill ES+ datasets and performs comparably in
Weill ES. Specifically, FEMI achieves an mean absolute error of
7.14 ± 0.13 hpi onWeill ES, 5.93 ± 0.05 on Spain ES + , and 6.28 ± 0.13 on
2020 Weill ES + .

Stage prediction. Accurate staging of embryos is crucial for mon-
itoring developmental progression and optimizing outcomes in IVF
procedures. Traditional manual staging by embryologists is time-
consuming and subject to inter-observer variability. Automated
models can provide consistent and efficient stage classification,
enhancing decision-making in clinical settings. We evaluated FEMI’s
performance in classifying embryos into twelve developmental
stages (Fig. 6a), comparing it with several benchmark models:
Embryovision, VGG16, ResNet101-RS, EfficientNet V2, ConvNext,
CoAtNet, and ViT MAE ImageNet. Embryovision is a pipeline wherein
a step is specifically designed for stage classification, whichwe use an
additional baseline24. Embryonic development is a continuous pro-
cess, and images often capture embryos in transitional stages. Dis-
crete classification may not adequately represent the subtle
morphological changes occurring between stages. Therefore, for
FEMI and the other benchmarkmodels (excluding Embryovision), we
treated stage classification as a regression task. This approach allows
the models to predict fractional stages, providing a more nuanced
understanding of embryo development. After training, we binned the
regression outputs into integer classes corresponding to the 12
defined stages for evaluation purposes. For more details about the
methodology, see Methods. We assessed the models using top-1
accuracy, top-2 accuracy, Quadratic Weighted Kappa (QWK), and
Spearman rank correlation to capture both exact matches and the
quality of ordinal predictions (Fig. 6b).

FEMI outperformed the benchmark models across most metrics.
Specifically, FEMI achieved a top-1 accuracy of 60.31%, comparable to
Embryovision’s 60.58%, and surpassed the performances of the other
models.Notably, FEMIwas able to achieve comparable performance to
Embryovision without using multiple focal planes. The top-2 accuracy
of FEMI was 90.79%, significantly better than Embryovision’s 88.36%,
indicating that even when the exact stage was not predicted, the
model’s second choicewas often correct, reflecting its ability to closely
approximate the true developmental stage. The higher QWK score of
FEMI (96.10% compared to Embryovision’s 94.75%) demonstrates
better agreement with the true stages, accounting for the ordinal
nature of the classification task. Additionally, FEMI’s Spearman rank
correlation coefficient was 96.07%, suggesting a strong monotonic
relationship between the predicted and actual stages. FEMI performed
less optimally at predicting stages from the 3-cell tomorula stages due
to increased label noise; the ground truth labels during transitional
periods are more difficult to assign accurately (Fig. 6c). These results
indicate that treating stage classification as a regression problem
captures the continuous progression of embryo development more
effectively than discrete classification. FEMI’s superior performance
underscores the advantage of leveraging self-supervised learning on
large-scale, unlabeled data to capture complex developmental
features.

Discussion
In this study, we introduced FEMI, a foundation model based on the
ViT MAE architecture, trained on approximately 18 million time-lapse
images of embryos. FEMI was evaluated across multiple clinically
relevant tasks, demonstrating significant improvements in embryo
assessment accuracy compared to existing models. Notably, FEMI
achieved a marked enhancement in ploidy prediction, with AUROC
values exceeding 0.70 in several datasets, specifically achieving an
AUROC of 0.75 in the Spain ES+ dataset using only image data. On
discriminating complex aneuploidy from euploid embryos, FEMI
achieves over 0.85 AUROC with the inclusion of maternal age in mul-
tiple datasets. This performance is critical as accurate ploidy status
prediction is a cornerstone in selecting embryos with the highest
potential for successful implantation. The application of FEMI in clin-
ical settings could revolutionize the process of embryo selection in IVF
treatments by providing a standardized, non-invasive, and efficient
methodology for assessing embryo viability. This shift could not only
lower the costs associated with embryo selection by allowing embry-
ologists to de-prioritize embryos predicted to be aneuploidy.
Deprioritizing embryos predicted to be aneuploid is crucial as aneu-
ploid embryos are associated with lower implantation rates and a
higher risk of miscarriage compared to euploid embryos. Similarly, in
embryo quality scoring, FEMI consistently outperformed traditional
and other AI-based models, particularly in predicting the ICM score
and overall blastocyst score from both image and video inputs. The
model’s ability to accurately replicate the scoring systems used in
different clinical settings, such as those at Weill Cornell Medicine and
IVF Florida, underscores its potential to standardize and enhance the
embryo selection process in IVF clinics globally. Furthermore, by
automating the grading process, FEMI could help eliminate subjective
biases and variability among embryologists, leading to more objective

Fig. 4 | Quality Score Performance Across Models and Datasets. Mean absolute
error is used to measure performance on ES (Embryoscope) and ES+ (Embryo-
scope + ) microscopes. Performances are aggregated across 4 replicates (four-fold
cross validation) (n = 4). Asterisks represent statistical significance with p <0.05,
where statistical significance is determined by performing a one-way ANOVA test
followed by a TukeyHSD test. For blastocyst score: a image input;Weill ES,p =0.41;
2020 Weill ES + , p = 1.6e-21; 2021+ Weill ES + , p = 1.1e-24. b video input; Weill ES,
p =0.26; 2020 Weill ES + , p =0.18; 2021+ Weill ES + , 1.7e-9. For expansion score:
c image input; Weill ES, p = 2.8e-18; 2020 Weill ES + , p =0.99; 2021+ Weill ES + ,

p = 2.5e-20. d video input; Weill ES, p = 7.9e-26; 2020 Weill ES + , p =0.23; 2021+
Weill ES + , p = 4.5e-17. For inner cell mass score: e image input; Weill ES, p =0.99;
2020 Weill ES + , p = 1.4e-22; 2021+ Weill ES + , p = 1.7e-28. f video input; Weill ES,
p = 2.7e-15; 2020 Weill ES + , p = 3.6e-21; 2021+ Weill ES + , p = 1.2e-27. For tro-
phectoderm score: g image input; Weill ES, p =0.34; 2020 Weill ES + , p =0.36;
2021+ Weill ES + , p = 1.5e-33. h video input; Weill ES, p =0.86; 2020 Weill ES + ,
p = 2.5e-37; 2021+ Weill ES + , p = 3.7e-39. For all subplots, error bars show mean
values +/- SEM. Source data are provided as a Source Data file.
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and reproducible assessments. The application of FEMI to the task of
embryo component segmentation illustrated its capacity to perform
detailed morphological analyses, important for automating and refin-
ing the assessment of embryo development stages. Although FEMI did
not significantly outperform all comparison models in segmentation
tasks, its competitive performance suggests it as a valuable tool for
clinical and research applications in embryology. Continuing from the
segmentation, FEMI’s application in embryo witnessing and blastula-
tion time prediction further exemplifies its utility in embryological

assessments. In embryo witnessing, a task vital for ensuring the accu-
racy of embryo handling and identification, FEMI demonstrated
superior performance, achieving F1 scores over 90% in distinguishing
embryos acrossdistant timepoints (96 hpi to 112 hpi). This capability is
particularly important in high-throughput clinical environmentswhere
manualwitnessing is prone to errors and resource-intensive. In the task
of predicting blastulation time, FEMI’s predictions were impressively
precise, with mean absolute errors as low as 5.93 hpi in the Spain ES+
dataset. The accuracy in predicting the transition to the blastocyst

(c) Blastula�on Time Predic�on

(b) Embryo Witnessing

(a) Blastocyst Component Segmenta�on

* *

*

*

*

*

Fig. 5 | Performance on Segmentation, Witnessing, and Blastulation Time
Prediction. Performances on ES (Embryoscope) and ES+ (Embryoscope + )
microscopes for each task. Performances are aggregated across 4 replicates (four-
fold cross validation) (n = 4). Asterisks represent statistical significance with
p <0.05, where statistical significance is determined by performing a one-way
ANOVA test followed by a Tukey HSD test. a Segmentation performance for each
embryo component via Dice Score. Inner Cell Mass, p =0.53; Zona Pellucida,

p =0.26; Trophectoderm, p =0.06. b Embryo witnessing performance via F1 score
across all datasets. Weill ES, p =0.99; 2020 Weill ES + , p = 8.9e-22; Spain ES + ,
p = 1.7e-10; Florida ES + ,p = 1.9e-25; 2021+Weill ES + ,p = 1.7e-25. cBlastulation time
prediction performance using mean absolute error for Weill ES, Spain ES + , and
2020Weill ES+ datasets. Weill ES, p =0.81; 2020Weill ES + , p = 1.3e-39; Spain ES + ,
p = 1.8e-30. For all subplots, error bars showmean values +/- SEM. Source data are
provided as a Source Data file.
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stage provides embryologists with critical information to optimize the
timing of interventions and improve the selection process for embryo
transfer. There is also substantial potential in applying FEMI to other
aspects of reproductive medicine, such as predicting implantation
potential, live birth, and other clinically relevant tasks. These tasks
require task-specific labels. Clinics that have access to these labels and
want to train a generalizable prediction model could use FEMI as the
backbone. Moreover, the performances shown here for downstream
tasks are likely not the ceiling for FEMI and could be further increased
with a larger labeled dataset.

Compared to other deep-learning-based models, FEMI’s self-
supervised learning framework allows it to excel in tasks where tradi-
tional supervisedmodels falter due to the variability and limited size of
labeled training datasets. For example, the Vision Transformer archi-
tecture of FEMI has provenmore adaptable thanmodels like VGG16 or
EfficientNet V2, particularly in complex tasks like video-based ploidy
prediction and blastulation time prediction, where both spatial and
temporal features play an important role. These comparisons under-
scoreFEMI’s capacity to not onlymatchbut exceed theperformanceof
existing technologies in embryo assessment, promising to set new

standards in the accuracy and objectivity of IVF treatments. The gen-
eralizability of FEMI across various datasets highlights its robustness
and adaptability to different clinical environments. FEMI demon-
strated strong performance acrossmultiple clinics with varied imaging
protocols, as evidenced by its superior results in tasks such as ploidy
prediction and embryo quality scoring across datasets from Weill
Cornell Medicine, IVF Florida, and clinics across Europe. This broad
applicability suggests that FEMI can be effectively integrated into
diverse clinical workflows without the need for extensive
customization.

Models for embryo selection are generally classified into one-
step and two-step approaches25. One-step models directly predict
clinical outcomes, such as embryo viability or implantation potential,
from raw embryo images using deep learning methods. While effi-
cient, these models often operate as black boxes, limiting their
interpretability. In contrast, two-step models first annotate specific
embryonic features—either manually by embryologists or auto-
matically using AI—and subsequently use these annotated features to
rank or predict clinical outcomes. This separation enhances trans-
parency and interpretability, as the decision-making process is based
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(b) Performance of Models Across Mul�class Classifica�on Metrics

Fig. 6 | Characteristics and Performances on Stage Prediction Task. Asterisks
represent statistical significance with p <0.05, where statistical significance is
determined by performing a one-way ANOVA test followed by a Tukey HSD test.
a Representative image sample for each of the 12 stages of development was col-
lected from 12 different embryos. b Performances of FEMI and competitor models
across multiclass classification metrics. Performances are aggregated across 4

replicates (four-fold cross validation) (n = 4). Top 1 Accuracy, p =0.54; Top 2
Accuracy, p = 1.5e-54; Quadratic Weighted Kappa (QWK), p = 1.8e-58; Spearman
Rank Correlation, p = 3.7e-56. Error bars show mean values +/- SEM. c Confusion
matrix showing performance of FEMI across development stages. Source data are
provided as a Source Data file.
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on identifiable and clinically relevant features. FEMI bridges these
paradigms by enabling both annotation and outcome prediction
within a unified framework which can be used to extract both com-
prehensive morphological features and utilize them to predict var-
ious clinical outcomes. This integrated approach combines the
efficiency of one-step models with the interpretability benefits of
two-step models, ensuring that predictions are both accurate and
transparent.

Despite itswide applicability, FEMI’s training and validation have
inherent limitations. The model’s performance is contingent upon
the quality and diversity of the dataset used. The current dataset,
while extensive, is predominantly sourced from high-resource set-
tings, which may not capture the variability found in lower-resource
environments. This limitation could potentially affect the model’s
performance and generalizability in globally diverse clinical settings.
With a larger dataset, more computational resources will be needed
to train the model, further limiting the size of the training dataset.
The time-lapse images themselves are limited due to their inherent
spatial and temporal resolutions. Furthermore, each downstream
task presents distinct limitations. For ploidy prediction, we excluded
mosaic embryos and faced challenges due to insufficient labeled data
for training models to differentiate specific types of aneuploidies.
Our ploidy prediction downstream tasks also only use input up to 112
hpi. Recent research has shown that slower-developing blastocysts,
such as Day 6/7 blastocysts with blastulation occurring after 130 hpi
may lead to euploid embryos26. However, training on these late stage
embryos may present challenges due to limited time-lapse image
series that extend to Day 7. That said, FEMI, as a foundational model,
is designed to be adaptable and extensible. While our current train-
ing primarily focuses on data up to 112 hpi, the model architecture
allows future researchers to fine-tune FEMI with additional datasets
that include later time points. It is important to note that our ploidy
prediction models are not intended to replace PGT-A. In the realm of
quality score estimation, the ground truth labels may reflect biases
influenced by embryologist input. Nevertheless, this study demon-
strates that FEMI can effectively learn and replicate established
scoring systems, allowing users to adapt FEMI for their specific
datasets. The embryo component segmentation task also suffers
from a small dataset. Future advancements in embryo component
segmentation could benefit from integrating true 3D modeling
approaches. Utilizing 3D time-lapse imaging would allow for more
accurate and consistent segmentation of the ICM and TE by captur-
ing the complete spatial context of the blastocyst. Moreover, for
segmentation and stage prediction tasks, the same datasets were
used for both training and testing due to the limited availability of
labeled data. Thismay impact the ability to test the generalizability of
FEMI in these specific tasks. Lastly, the labels used for predicting
blastulation time may suffer from intra-observer variability in
recording morphokinetics. Despite these issues, our results affirm
FEMI’s effectiveness in these tasks as a proof of concept.

The development of a foundation model for IVF time-lapse ima-
ging is a significant advancement in reproductive medicine. This
model will serve as a crucial decision support tool for clinicians,
enhancing their ability to select the most viable embryos. Further-
more, bymaking FEMI available to the broader scientific community, it
can be adapted and utilized for various research purposes and clinic-
specific needs, fostering greater collaboration and innovation in the
field. To ensure that FEMIprovides tangible benefits in clinical settings,
weplan to implement randomized controlled trials in the future. These
trials will compare FEMI-assisted embryo selection with standard
manual selection techniques, aiming to assess improvements in IVF
success rates and overall embryo assessment accuracy. This approach
will enable us to robustly evaluate FEMI’s performance and ensure its
reliability and effectiveness as a decision-support tool in reproductive
medicine.

Methods
The study was performed in accordance with relevant guidelines and
regulations. The studywas approved by the Institutional Review Board
at Weill Cornell Medicine (numbers 1401014735 and 19–06020306)
and by the IVI Valencia Institutional Review Board (number 1709-VLC-
094-MM). IRB determined that this research meets the exemption
requirements at HHS 45 CFR 46.104(d) and is secondary research for
which consent is not required. A waiver of informed consent was
granted from the IRB as the images were de-identified for this retro-
spective review of clinical data. The embryo imagingwas performed as
part of the standard care procedure during the preimplantation and
IVF cycle. No discarded embryos were used. In this study, information,
which may include information about biospecimens, is recorded by
the investigator in such a manner that the identity of the human sub-
jects cannot readily be ascertained directly or through identifiers
linked to the subjects. Moreover, the investigators do not contact the
subjects, and the investigatorswill not re-identify the subjects. As such,
informed consent was not obtained, and participants did not receive
compensation for the study.

Datasets and preprocessing
We curated images from multiple public and private datasets for
training FEMI. Attributes of each of the dataset can be found in Sup-
plemental Table 1. While each embryo has associated time-lapse ima-
ges, not all embryos have associated clinical information like PGT-A,
morphokinetics, blastocyst scores, etc. These annotations are specific
to eachdataset, andwithin eachdataset, some samplesmaybemissing
the annotations. For training FEMI via SSL, a combined 17,968,959
images were processed, spanning −30 to 30 focal depths, and cropped
using the mask from the embryo segmentation model. Focal planes
used for model training were defined as z = 0 μm, representing the
equatorial plane of the embryo, and z = ±30 μm, providing additional
depth perspectives. The z =0 μmplane was automatically determined
by the Embryoscope+ incubator’s automated focusing system, with no
manual adjustments made during culture or re-insertion of the dish.
Including images from z = ±30 μm allows the model to capture dif-
ferent morphological features across various depths, thereby enhan-
cing its ability to learn comprehensive embryo characteristics. For the
training of FEMI, images after 85 hpi were used. The selection of ima-
ges taken after 85 hpi aligns with the morula stage of embryo devel-
opment, a phase characterized by significant morphological changes.
This timepoint is chosen becausemost clinically relevant tasks, such as
ploidy prediction and embryo quality scoring, are conducted after the
morula stage. Additionally, embryos exhibit more complex features
post-morula, providing a richer dataset for the foundation model to
learn from. Contributing to this dataset is 4,521,481 images fromWeill
ES (25.16 %), 2,080,483 images from2020Weill ES+ (11.57 %), 1,962,797
images from Florida ES+ (10.92 %), and 9,022,769 images from 2021+
Weill ES+ (50.21 %). We also had 36,722 images from Spain ES + ,
342,363 images from the Hospital of Nantes, and 2344 images from
European clinics which was a total of ~1% of the overall dataset.

An embryo segmentation model was trained to crop embryos
from thepetri dish tomaximize informationwithin the image space for
FEMI to learn about embryos better. An InceptionV3 U-Net was trained
using 30 image-mask pairs of whole-embryo segmentations. 80% of
the dataset was used for training the model, with the rest being used
for validation. To make the model more robust, we added data aug-
mentations to the training data, including random cropping, flipping,
rotation, and translation. This segmentation model was then used to
create masks for the images curated for FEMI SSL training. Before
generating segmentation masks, each image undergoes an automatic
brightness and contrast adjustment to standardize lighting conditions
and enhance the visibility of embryo structures. This process is
implemented using an adaptive algorithm that first converts colored
images to grayscale. The algorithm then computes the grayscale
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histogram and identifies the intensity levels corresponding to the
central 80% of the pixel distribution by excluding the top and bottom
10% of pixel intensities. Based on these thresholds, the algorithm cal-
culates scaling factors for brightness (β) and contrast (α) to adjust the
image intensity values uniformly across all images. After generating a
segmentation mask for each input image, circular contours were
detected in the image using OpenCV. A bounding box is drawn around
themost circular contour,which is likely the embryo. The image is then
cropped around the bounding box and resized to 224 ×224 for input
into FEMI. Input images are then normalized using ImageNetmean and
standard deviation parameters, consistent with the training recipe for
ViT MAE architectures.

FEMI - ViT Masked Autoencoder
Weights from ImageNet-1k pre-trained masked ViT MAE (encoder and
decoder) were downloaded from (https://github.com/facebookresearch/
mae) and converted to TensorFlow. Weights that were trained with
normalized pixel loss were used as previous studies have suggested that
using normalized pixel loss leads to better performance on downstream
tasks. The encoder is a large vision transformer with 24 transformer
blocks and an embedding vector size of 1,024. The decoder is a smaller
vision transformer with 8 transformer blocks and an embedding vector
size of 512. Unmasked patches of size 16 × 16 are inputted into the
encoder, which then projects them into feature vectors of size 1024.
These vectors undergo processing through the encoder’s 24 transformer
blocks, each incorporating multiheaded self-attention and a multilayer
perceptron, to generate high-level features. The decoder, in turn, inputs
these features along with masked dummy patches and reconstructs the
image patch using a linear projection. The primary objective during
model training is the reconstruction of time-lapse images from highly
masked versions. As suggested byHe et al, only cropping augmentations
were used when training FEMI. 80% of 17,968,959 images were used for
training, and the remaining was used for validation. Ablation experi-
ments with different training dataset sizes for FEMI were studied with
predicting ploidy status as the downstream task (Supplemental Fig. 5).
Their experiments suggested the ViT-Large architecture approached a
ceiling in performance with ~18million training data points. Amask ratio
of 0.75 was used. FEMI was trained for 800 epochs with early stopping
(patience: 20 epochs), halting training and restoring weights to the
lowest validation loss if the validation loss failed to decrease within 20
epochs. To train FEMI, we use AdamW optimizer with a custom learning
rate schedule, which has 20 epochs ofwarmup followedby cosine decay.
A batch size of 256 per device was used with a learning rate of 1.5 ×10−4.

Benchmark models
Supervised learning models. To compare FEMI against traditional
supervised learning on downstream tasks, we explored the use of
multiplemodels, specifically the VGG16, ResNet101-RS, EfficientNet V2,
ConvNext, CoAtNet, and MoViNet architectures. The VGG16 archi-
tecture is one of the earliest large-scale convolutional architectures
used for image classification, but can readily be adapted for various
other tasks. Despite its age, the VGG16 model still performs well in
multiple image-based medical tasks27. More recently, ResNet101-
RS,EfficientNetV2, ConvNext, andCoAtNetmodels havebecomestate-
of-the-art models for supervised learning on image classification
tasks28–31. These models enhance their predecessors through various
means, such as the addition of residual connections, attention layers,
etc., and have garnered competitive performances on the ImageNet-1k
benchmark. For this study, we use the encoders from each of these
architectures, pre-trained on ImageNet-1k, and add downstream lay-
ers, similar to what we do to the FEMI encoder. The MoViNet archi-
tecture is a video classification architecture that only takes in videos as
inputs32. It has superior performance to many commonly used video
classificationmodels, such as 3DConvolutionalmodels, I3D, andVideo
Vision Transformers, and is significantly less data hungry. Because

some of the downstream tasks we explored could be adapted to a
video input, we also looked to compare FEMI with MoViNet on these
tasks. Similar to the other architectures, we use a Kinetics-600 pre-
trained MoViNet encoder for downstream tasks, which use the MoVi-
Net, where downstream layers can be adapted for both classification
and regression. For ploidy prediction, we also explore a previously
published model, STORK-A. STORK-A utilizes a ResNet18 architecture
as its backbone and was trained on static time-lapse images at 110 hpi.
For EUP vs. ANU, STORK-A was trained on a total of 10,378 time-lapse
images (aneuploids (n = 5953) and euploids (n = 4425)). For EUP vs.
CxA, STORK-A was trained on 7,434 time-lapse images (complex
aneuploids (n = 3009) and euploids (n = 4425)).

SSL models. We also benchmarked FEMI against models pre-trained
via self-supervision. Our first comparison was the ImageNet-1k ViT
MAE, where the ViT MAE was only trained using the ImageNet-1k
dataset and not the time-lapse image dataset curated for FEMI. For
multiple downstream tasks, we also compared the performance of
FEMI to a Swin Transformer V1, trained on both ImageNet-22k and
time-lapse images33. The weights for the Swin Transformer were
downloaded from (https://github.com/microsoft/Swin-Transformer)
and trained on the 17,968,959 time-lapse images FEMI was trained on.
The images went through the same processing as they did for FEMI.
The Swin Transformer was trained for 800 epochs with early stopping.
We use AdamWoptimizer with a custom learning rate schedule, which
has 20 epochs ofwarmup followedby cosine decay. A batch size of 256
per device was used with a learning rate of 1.5e-4. We also compare
FEMI to another state-of-the-art SSL architecture, I-JEPA, trained on the
same 18 million embryo image dataset. I-JEPA is a self-supervised
learning architecture recently released byMeta that has outperformed
many comparison SSL architectures in natural images. Similar to the
Swin transformer, weights for I-JEPA (VIH-H trained on ImageNet-1k)
were downloaded from (https://github.com/facebookresearch/ijepa)
and further pretrained on 17,968,959 time-lapse images34. I-JEPA was
pretrained for 100 epochs using the AdamW optimizer with a custom
learning rate schedule, which has 10 epochs of warmup followed by
cosine decay. A batch size of 128 per device was used with a learning
rate of 2e-3. For the embryo component segmentation downstream
tasks, we also compare FEMI to MedSAM35. To develop MedSAM, the
Segment Anything Model (SAM) was fine-tuned on various anatomical
structures. Broadly, the model uses a ViT encoder to extract image
features, a prompt encoder for integratinguser interactions (bounding
boxes), and a mask decoder. In this study, the bounding box is the
entire image.

Adaptation for downstream tasks
Hyperparameter tuning and fine-tuning strategy. To ensure a fair
comparison across FEMI and all benchmark models, we performed a
systematic hyperparameter search for each architecture using a
common range of learning rates (e.g., 1e-4 to 1e-2), batch sizes (from 8
to 64 depending on memory constraints), and optimizers (AdamW/
Adam). For each model and each task, a small-scale grid search was
performed to identify the optimal hyperparameters, using our cross-
validation procedure on the training folds and selecting the setting
with the best mean performance on the validation folds. We applied
the same procedure to determine which layers to freeze vs. train in
each model. Early layers were typically frozen, while deeper layers
(responsible formore task-specific features) were fine-tuned. For FEMI
(ViT MAE backbone), we found that freezing all but the final block
improved performance consistently across downstream tasks (e.g.,
ploidy prediction, quality scoring). Benchmarkmodels such as VGG16,
ResNet101-RS, EfficientNet V2, ConvNext, CoAtNet, and MoViNet
underwent the same tuning steps, in which we froze the backbone’s
initial layers and only trained a subset of top blocks after verifying that
this resulted in stable, optimal performance. This identical strategy for
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FEMI and all comparator architectures ensures our performance
comparisons are not biased by divergent tuning practices.

Ploidy prediction. In this study, we study ploidy prediction inmultiple
ways. The input to the model could be image-only, image+age, video-
only, or video+age. In addition, the task could be to discriminate
between euploidy and any aneuploid embryos, or between euploid
and complex aneuploid embryos. The image input is the time-lapse
image from 110 hpi. The video input is a time-lapse sequence from 96 -
112 hpi. Rajendran et al. identified the period from 96 to 112 hpi as
critical for ploidy determination due to significant morphological
changes that occur during this timeframe, which are indicative of
chromosomal abnormalities8. This finding informed the decision to
incorporate sequences of time-lapse images within this period for
ploidy prediction tasks. For the single image input, 110 hpi was used as
there is a larger volume of data at this specific time point, which
facilitates more effective training and enhances themodel’s predictive
performance. For image-only tasks, we add a fully-connected layer
with sigmoid activation to the encoder (from FEMI or benchmark
models). For video-only tasks, apart from the MoViNet architecture,
each frame of the video is passed through the encoder. These frame
features are then passed to a bi-directional long short-term memory
(LSTM) layer with hierarchical attention. The output of the attention
layer is passed to a fully-connected layer with sigmoid activation. For
theMoViNet benchmark, the entire video sequence is processedby the
encoder and outputs a feature embedding that is processed by a
classifier layer. For models where maternal age is included, maternal
age is first passed through a dense layer and then concatenated with
either the encoder output in image models or the output of the
attention layers in video models.

All embryos classified as mosaic have been removed from this
analysis, based on previous studies. For euploid vs. complex aneu-
ploid, single aneuploid embryos were removed. The task is framed as
binary classification. To reduce overfitting, we incorporate label
smoothing. We use binary cross-entropy loss and AdamW as the
optimizer. The batch size for imagemodels is 32 and for videomodels,
8. We train the model for 100 epochs with early-stopping. We use a
ReduceLROnPlateau scheduler, with a base learning rate of 1e-3. We
only fine-tuned specific layers of the encoder, dependent on the
architecture, to maximize performance. Specifically for FEMI, we
found that only fine-tuning the last hidden layer and freezing all earlier
layers performed the best for ploidy prediction.

Blastocyst quality scoring. For quality scores, we explored both
image and video inputs, similar to ploidy prediction. The architectures
for quality scoring are the same as those used for ploidy prediction,
except that scoring is framed as a regression task, which requires a
linear activation on the final fully-connected layer. Scores were scaled
to a range of between 0 - 1, which was achieved by dividing the overall
blastocyst scores by 14, and dividing the sub-scores (Expansion Score,
ICM Score, and TE Score) by 4.We use logcosh loss and AdamW as the
optimizer. The batch size for imagemodels is 32 and for videomodels,
8. We train the model for 100 epochs with early-stopping. We use a
ReduceLROnPlateau scheduler, with a base learning rate of 1e-3. Like
ploidyprediction,weonlyfine-tuned specific layers of the encoder. For
FEMI, we only fine-tuned the last hidden layer.

Embryo component segmentation. In this study, we explored the
segmentation of three embryo components. For FEMI, VGG16, and
ImageNet-1k ViT MAE, we used an architecture consisting of one
encoder and three decoders, one for each component. For FEMI and
ImageNet-1k ViT MAE, we use a UNETR architecture to perform
segmentation21. Briefly, a UNETR architecture uses a ViT as the encoder
with skip connections to the decoder from specific hidden layers of the
encoder. For the VGG16 model, we use a U-Net architecture for

segmentation. Our final benchmark model is a pre-trained MedSAM.
BecauseMedSAM requires a bounding box in addition to the image as
input, we opted to build three different MedSAMmodels, one for each
component. Each MedSAM model was trained to segment one com-
ponent, and the bounding boxprovided enclosed the entire image.We
added data augmentations to the training data, including flipping,
rotation, zooming, and translation. The model was trained for 200
epochs with early-stopping. We use a ReduceLROnPlateau scheduler,
with a base learning rate of 1e-3. All layers of all models were unfrozen
during training.

Blastulation time prediction. For blastulation time prediction, we
explore an image input,where the image is taken from72hpi. This time
pointwas chosen as it is well before embryos develop into a blastocyst.
We use the same architecture as that used in quality score estimation,
as we frame blastulation time prediction as a regression task. The
labels were the difference in time (in hours) between 72 hpi and the
time to the start of blastulation. The values were scaled by dividing by
150. We use logcosh loss, AdamW as the optimizer, and a batch size of
32. We train the model for 100 epochs with early-stopping. We use a
ReduceLROnPlateau scheduler, with a base learning rate of 1e-3. We
only fine-tuned specific layers of the encoder. For FEMI, we only fine-
tuned the last hidden layer.

Embryo witnessing. For embryo witnessing, we train the model using
a FaceNet framework36. Specifically, the model architecture utilizes an
encoder, followed by a L2 normalization layer. In this study, the
encoder is from FEMI, ImageNet-1k ViT MAE, ResNet101-RS, Effi-
cientNet V2, ConvNext, CoAtNet, and IVF SWIN. To train themodel, we
use a triplet loss algorithm. Triplet loss involves three data points— an
anchor (A), a positive (P), and a negative (N). The anchor and the
positive belong to the same class, while the negative belongs to a
different class. The goal of the loss function is to ensure that the dis-
tance between the anchor and the positive is less than the distance
between the anchor and the negative by somemargin. In particular, we
use triplet semi-hard loss, which refers to the method of negative
selection during the training process. A negative is considered semi-
hard if it is harder than the easiest negatives (those that are already
further away from the anchor than the positive) but not as challenging
as the hardest negatives (those that are closer to the anchor than
the positive). The pairs consisted of embryos from 96 and 112 hpi,
where the model learned to identify if a pair contains images from the
same embryo.WeuseAdamWas the optimizer, and a batch size of 144.
We train the model for 100 epochs with early-stopping. We use a
ReduceLROnPlateau scheduler, with a base learning rate of 1e-2. We
only fine-tuned specific layers of the encoder. For FEMI, we only fine-
tuned the last hidden layer.

Stage prediction. We utilized a dataset comprising 78,000 time-lapse
images captured at various developmental stages, with each of the
12 stages represented by an equal number of samples. For each
embryo, images were acquired across multiple focal planes to capture
comprehensive morphological details. We compared eight models for
stage classification: VGG16, ResNet101-RS, EfficientNet V2, ConvNext,
CoAtNet, ViT MAE pre-trained on ImageNet, Embryovision, and FEMI.
Embryovision is a previously published model tailored for embryo
stage classification,whichwe adapted to classify 12 stages24. It utilizes a
ResNeXt101 backbone andprocesses three focal planes (z = 0, +15,–15)
of a single image as input. Embryovision was trained as a multiclass
classificationmodel using categorical cross-entropy loss. For the other
seven models (VGG16, ResNet101-RS, EfficientNet V2, ConvNext,
CoAtNet, ViT MAE ImageNet, and FEMI), we used only the z = 0 focal
plane image andmodeled the task as a regression problem. Embryonic
development is a continuous process, and images may capture
embryos transitioning between stages. Treating stage classification as
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a regression task allows models to learn and predict fractional stages,
reflecting the continuous nature of development. This approach cap-
tures subtle morphological changes between stages, potentially lead-
ing to more accurate and informative predictions. After training, we
binned the continuous outputs into integer classes corresponding to
the 12 stages for evaluation. For the regression-basedmodels, we used
the log-cosh loss function, which is robust to outliers and provides
smooth gradients. Themodels were trained using the Adam optimizer
with an initial learning rate of 1e-3 for 50 epochs. For FEMI, we fine-
tuned only the last hidden layer to leverage the pre-trained features
while reducing overfitting. Early stopping was employed based on the
validation loss toprevent overfitting. For Embryovision,wemaintained
its original multiclass classification framework without modifications
to its trainingprocedure.Weevaluatedmodel performanceusing top-1
accuracy, top-2 accuracy, Quadratic Weighted Kappa (QWK), and
Spearman rank correlation. These metrics provide a comprehensive
assessment of both exact stage predictions and the models’ ability to
capture the ordinal relationships between developmental stages.

Computational resources
We used 10 NVIDIA RTX A6000 GPUs to train FEMI. FEMI took about
four months to train. For downstreammodels, we used a combination
of A6000 GPUs and A100 GPUs. Training times (on one A100 GPU) for
downstream tasks are shown in Supplemental Table 2.

Statistics and reproducibility
Relevantmetricswere calculated for each task.We calculated themean
and standard deviation over all four folds of cross-validation for each
task and each architecture. The standard error is calculated by dividing
the standard deviation by the square root of the sample size, or 4. For
each task, we performed a one-way ANOVA test followed by a Tukey’s
Honestly Significant Difference (HSD) test to determine if FEMI was
significantly better than all other models. A p-value < 0.05 was con-
sidered significant. Sample sizes for datasets were determined based
on the maximum usable subset available, after all exclusion criteria
were applied to embryos. These exclusion criteria included embryos
with a mosaic PGT-A status, and embryos with missing information
(specific to the downstream task) such as blastocyst score, ploidy
status, and maternal age. Randomization was introduced into experi-
mentation through four-fold cross-validation in all relevant compar-
isons. The investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The WCM, IVF Florida, and IVI RMA embryo time-lapse imaging data-
sets were not collected as part of this study, and were analyzed ret-
rospectively. The embryo-imaging datasets are available under
restricted access owing to reasonable privacy and security concerns.
Researchers can request access to the named institutions whichwill be
evaluated on a case-by-case basis. Any requests should be sent to N.Z.
(nizanin@med.cornell.edu). Requests will receive a response within a
week. The public imaging datasets we used are available at https://doi.
org/10.5281/zenodo.6390798 and https://github.com/software-
competence-center-hagenberg/Blastocyst-Dataset. The current FEMI
trainedmodel is available for academic andnon-profit use. They canbe
accessed at https://huggingface.co/ihlab/FEMI. Source data are pro-
vided with this paper.

Code availability
The code used to develop the model, perform the analyses and gen-
erate results in this study is publicly available and has been deposited

in https://github.com/ih-lab/FEMI (10.5281/zenodo.15490833), under
theCreativeCommonsAttribution-NonCommercial-NoDerivatives 4.0
International Public License37.
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