Publications

High-speed optical imaging with sCMOS pixel reassignment

Published in Nature Communications, 2024

Citation: Mandracchia, B., Zheng, C., Rajendran, S. et al. High-speed optical imaging with sCMOS pixel reassignment. Nat Commun 15, 4598 (2024). https://doi.org/10.1038/s41467-024-48987-7

Predicting Embryo Ploidy Status Using Time-lapse Images

Published in Human Reproduction, 2023

Citation: S Rajendran and others, O-120 Predicting Embryo Ploidy Status Using Time-lapse Images, Human Reproduction, Volume 38, Issue Supplement_1, June 2023, dead093.147, https://doi.org/10.1093/humrep/dead093.147

Biomedical discovery through the integrative biomedical knowledge hub (iBKH)

Published in Iscience, 2023

Citation: Su, C., Hou, Y., Zhou, M., Rajendran, S., Maasch, J. R. M. A., Abedi, Z., Zhang, H., Bai, Z., Cuturrufo, A., Guo, W., Chaudhry, F. F., Ghahramani, G., Tang, J., Cheng, F., Li, Y., Zhang, R., DeKosky, S. T., Bian, J., & Wang, F. (2023). Biomedical discovery through the integrative biomedical knowledge hub (iBKH). iScience, 26(4), 106460. https://doi.org/10.1016/j.isci.2023.106460

Data heterogeneity in federated learning with Electronic Health Records: Case studies of risk prediction for acute kidney injury and sepsis diseases in critical care

Published in PLOS Digital Health, 2023

Citation: Rajendran, S., Xu, Z., Pan, W., Ghosh, A., & Wang, F. (2023). Data heterogeneity in federated learning with Electronic Health Records: Case studies of risk prediction for acute kidney injury and sepsis diseases in critical care. PLOS digital health, 2(3), e0000117. https://doi.org/10.1371/journal.pdig.0000117

A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: A retrospective model development and validation study

Published in The Lancet Digital Health, 2023

Citation: Barnes, J., Brendel, M., Gao, V. R., Rajendran, S., Kim, J., Li, Q., Malmsten, J. E., Sierra, J. T., Zisimopoulos, P., Sigaras, A., Khosravi, P., Meseguer, M., Zhan, Q., Rosenwaks, Z., Elemento, O., Zaninovic, N., & Hajirasouliha, I. (2023). A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study. The Lancet. Digital health, 5(1), e28–e40. https://doi.org/10.1016/S2589-7500(22)00213-8

Creation of a Proof-of-Concept 3D-Printed Spinal Lateral Access Simulator

Published in Cureus, 2022

Citation: Pullen, M. W., Valero-Moreno, F., Rajendran, S., Shah, V. U., Bruneau, B. R., Martinez, J. L., Ramos-Fresnedo, A., Quinones-Hinojosa, A., & Fox, W. C. (2022). Creation of a Proof-of-Concept 3D-Printed Spinal Lateral Access Simulator. Cureus, 14(5), e25448. https://doi.org/10.7759/cureus.25448

Distance Traveled to Tertiary Care as Prognostic Indicator in Intracerebral Hemorrhage Outcomes

Published in Society of Critical Care Medicine, 2022

Citation: Rajendran, S. , Ong, T. , Zameza, P. , Wolfe, S. , Topaloglu, U. , Duncan, P. , Anwar, M. , Samuel, R. , Budigi, B. , Lack, C. & Sarwal, A. (2022). 779: DISTANCE TRAVELED TO TERTIARY CARE AS PROGNOSTIC INDICATOR IN INTRACEREBRAL HEMORRHAGE OUTCOMES. Critical Care Medicine, 50 (1), 384-384. doi: 10.1097/01.ccm.0000809440.55714.3d.

Cloud-Based Federated Learning Implementation Across Medical Centers

Published in JCO Clinical Cancer Informatics, 2021

Citation: Rajendran S, Obeid JS, Binol H, D Agostino R Jr, Foley K, Zhang W, Austin P, Brakefield J, Gurcan MN, Topaloglu U. Cloud-Based Federated Learning Implementation Across Medical Centers. JCO Clin Cancer Inform. 2021 Jan;5:1-11. doi: 10.1200/CCI.20.00060. PMID: 33411624; PMCID: PMC8140794.